Cho hàm số y = m - 2 n - 3 x + 5 x - m - n . Với giá trị nào của thì đồ thị hàm số nhận hai trục tọa độ là tiệm cận?
A. m ; n = 1 ; 1
B. m ; n = 1 ; - 1
C. m ; n = - 1 ; 1
D. Không tồn tại m,n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hai đường thẳng song song thì m-1=3-m
=>2m=4
hay m=2
\(\text{//}\Leftrightarrow m-1=3-m\Leftrightarrow m=2\\ \cap\Leftrightarrow m-1\ne3-m\Leftrightarrow m\ne2\)
B1:
Đặt (d): y=(m+5)x+2m-10
c) Để đồ thị hàm số đi qua điểm A(2;3) thì
Thay x=2 và y=3 vào (d), ta được:
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow2m+10+2m-10=3\)
\(\Leftrightarrow4m=3\)
hay \(m=\dfrac{3}{4}\)
a) H/s là bậc nhất ⇔ m+5≠0 ⇔m ≠-5
b) H/s đồng biến ⇔ m+5> 0 ⇔ m> -5
c) H/s đi qua A( 2,3) ⇔ 2=(m+5).2 +2m -10 ⇔ 2m+ 2m +10 -10 =2
⇔ m= \(\dfrac{1}{2}\)
d) H/s cắt trục tung tại điểm có tung độ bằng 9
⇔ x=0 thì y=9 ⇔ (m+5).0 +2m -10 =9
⇔m= \(\dfrac{19}{2}\)
e) H/s đi qua điểm 10 trên trục hoành ⇔ y=0, x=10
⇔ 0= (m+5).10 +2m -10 ⇔m= \(\dfrac{-40}{12}\)
f) h/s song song với y=2x-1
⇔ \(\left\{{}\begin{matrix}m+5=2\\2m-10\ne-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}m=-3\\m\ne\dfrac{9}{2}\end{matrix}\right.\)
⇔m=-3
Phương trình hoành độ giao điểm:
`x-m=-2x+m-1`
`<=>3x-2m+1=0`
2 đồ thị cắt nhau tại 1 điểm trên `Ox <=> -2m+1 =0 <=> m=1/2`
ta có: y=x-m (d); y=-2x+m-1 (d')
pt hoành độ của (d) và (d')
x-m=-2x+m-1
⇔x+2x-m-m+1=0
⇔3x-2m+1=0 (1)
để (d) và (d') cắt nhau tại một điểm thuộc trục hoành -->y=0⇔x=m
--->x=m là nghiệm của pt(1)
thay x=m vào pt, ta có:
3m-2m+1=0
⇔m+1=0
⇔m=-1
vậy khi m=-1 thì đồ thị của các hàm số trên cắt nhau tại một điểm thuộc trục hoành
Đáp án đúng : B