Cho hình chóp tam giác S.ABC có đáy là tam giác cân AB =AC =a, góc BAC bằng 120 0 cạnh bên S A = a 3 và vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC
A. 3 a 3 12
B. 3 a 3 4
C. 3 a 3 4
D. 1 4 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: S A B C = 1 2 a 2 . sin 120 ∘ = a 2 3 4 .
Thể tích khối chóp S.ABCD là: V = 1 3 S A . S A B C = 1 3 . a 3 . a 2 3 4 = a 3 4
Đáp án D
S A B C = A B . A C . sin B A C ^ 2 = a 2 3 4
Vì SA vuông góc với mặt phẳng đáy nên suy ra
V
S
.
A
B
C
=
1
3
.
S
A
.
S
A
B
C
=
1
3
.
a
3
.
a
2
3
4
=
1
4
a
3
Đáp án A
Gọi H là trung điểm của AB suy ra S H ⊥ A B
Do Δ S A B vuông cân tại S nên S H = A B 2 = a 2 ; S A B C = a 2 2 ⇒ V = a 3 12 .
Gọi H là trung điểm của AB.
∆ S A B đều và nằm trong mặt phẳng vuông góc với
Chọn D.
Đáp án B.
Dựng tam giác đều IAB (I và C cùng phía bờ AB).
Ta có:
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Ta có:
Dựng tam giác đều IAB (I và C cùng phía bờ AB). Ta có ∠ I B C = 120 ° - 60 ° = 60 ° và IB=BC nên DIBC đều, IA=IB=IC=a
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Đáp án A
Gọi M là trung điểm AB khi đó S M ⊥ A B ⇒ S M ⊥ A B C
Ta có: S M = a 3 2 (độ dài đường cao trong tam giác đều);
d t A B C = 1 2 A B . A C . sin 120 0 = 3 4 a 2
Vậy thể tích của khối chop là:
V S . A B C = 1 3 S M . d t A B C = 1 3 a 3 2 a 2 3 4 = a 3 8