Cho hình bình hành abcd trên đường chéo BD lấy hai điểm M và N sao cho BM = DN bằng 1/3 BD
a. Chứng minh tam giác AMB tam giác CND
b. AC cắt BD tại O. Chứng minh tứ giác AMCN là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Tứ giác ABCD là hình bình hành.
\(\Rightarrow AB=CD\)(tính chất hình bình hành)
và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét \(\Delta AMB\)và \(\Delta CND\)có:
\(AB=CD\)(cmt)
\(\widehat{ABM}=\widehat{CDN}\)(cmt)
\(BM=DN\)(GT)
\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
a: Xét ΔAMB và ΔCND có
AB=CD
\(\widehat{ABM}=\widehat{CDN}\)
BM=DN
Do đó: ΔAMB=ΔCND
a. Tứ giác ABCD là hình bình hành.
(tính chất hình bình hành)
và (so le trong)
Xét và có:
(cmt)
(cmt)
(GT)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có
AD=CB
\(\widehat{ADK}=\widehat{CBH}\)
Do đó: ΔADK=ΔCBH
Suy ra: DK=BH
Xét tứ giác BKDH có
DK//BH
DK=BH
Do đó: BKDH là hình bình hành
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra AE=CF: ED=FB
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
FB=ED
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác KBID có
KB//ID
KB=ID
Do đó: KBID là hình bình hành
Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF và DE=BF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
KB=ID
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác BKDI có
BK//ID
BK=ID
Do đó: BKDI là hình bình hành
Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường
a) Vì tứ giác ABCD
=>AB//CD
=>^AMB=^CND (2 góc so le trong)
Xét t/gAMB và t/gCND ta có:
MB=DN (gt)
^AMB=^CND (cmt)
AB=CD ( hai cạnh đối của hbh = nhau)
b) quên vẽ điểm O vẽ hộ nhé
Vì AC cắt BD tại O
do đó: O là trung điểm của BD và AC
=>OA=OC (1)
=>OB=OD
Mà ta có: OD=OB (cmt)
mà DN=BM (gt)
do đó: ON=OM (2)
Từ (1) và (2) =>AMCN là hbh ( 2 đường chéo cắt nhau tại trung điểm)
cho mình sửa lại 1 số chỗ
vì tứ giác ABCD là hbh=>...(phần đầu)
do đó ON=OM ( O sẽ là trung điểm MN) (phần sau)
Mà AD lại cắt BD tại O
bổ sung nhé