K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

ABCDMN

a) Vì tứ giác ABCD

=>AB//CD

=>^AMB=^CND (2 góc so le trong)

Xét t/gAMB và t/gCND ta có:

MB=DN (gt)

^AMB=^CND (cmt)

AB=CD ( hai cạnh đối của hbh = nhau)

b) quên vẽ điểm O vẽ hộ nhé 

Vì AC cắt BD tại O

do đó: O là trung điểm của BD và AC

=>OA=OC (1)

=>OB=OD

Mà ta có: OD=OB (cmt)

mà DN=BM (gt)

do đó: ON=OM (2)

Từ (1) và (2) =>AMCN là hbh ( 2 đường chéo cắt nhau tại trung điểm)

7 tháng 11 2021

cho mình sửa lại 1 số chỗ 

vì tứ giác ABCD là hbh=>...(phần đầu)

do đó ON=OM ( O sẽ là trung điểm MN) (phần sau)

Mà AD lại cắt BD tại O

bổ sung nhé

1 tháng 11 2020

a. Tứ giác ABCD là hình bình hành.

\(\Rightarrow AB=CD\)(tính chất hình bình hành)

và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)

Xét \(\Delta AMB\)và \(\Delta CND\)có:

\(AB=CD\)(cmt)

\(\widehat{ABM}=\widehat{CDN}\)(cmt)

\(BM=DN\)(GT)

\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

22 tháng 10 2021

a: Xét ΔAMB và ΔCND có 

AB=CD

\(\widehat{ABM}=\widehat{CDN}\)

BM=DN

Do đó: ΔAMB=ΔCND

4 tháng 10 2021

không biết tớ trả trước mà

4 tháng 10 2021

a. Tứ giác ABCD là hình bình hành.

⇒AB=CD(tính chất hình bình hành)

và AB//CD⇒ABD^=BDC^(so le trong)

Xét ΔAMBvà ΔCNDcó:

AB=CD(cmt)

ABM^=CDN^(cmt)

BM=DN(GT)

⇒ΔAMB=ΔCND(c.g.c)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

25 tháng 9 2018

27 tháng 10 2021

b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có 

AD=CB

\(\widehat{ADK}=\widehat{CBH}\)

Do đó: ΔADK=ΔCBH

Suy ra: DK=BH

Xét tứ giác BKDH có 

DK//BH

DK=BH

Do đó: BKDH là hình bình hành

27 tháng 10 2021

Biết hết không ạ em đang cần gấp.

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra AE=CF: ED=FB

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

FB=ED

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác KBID có 

KB//ID

KB=ID

Do đó: KBID là hình bình hành

Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

KB=ID

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác BKDI có

BK//ID

BK=ID

Do đó: BKDI là hình bình hành

Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường