Tìm giá trị của y thỏa mãn: a a a ¯ : 37 x y = a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
aaa : 37 .x y = a
a x 111 : 37 x y = a
a x 3 x y = a
=> 3 x y = 1
=> y = 1/3
\(x^2+y^2=x+y\\ \Leftrightarrow x^2-x+y^2-y=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\\ A=x+y=\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)+1\)
Áp dụng Bunhiacopski:
\(\left[\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)\right]^2\le\left(1^2+1^2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]=2\cdot\dfrac{1}{2}=1\\ \Leftrightarrow A\le1+1=2\)\(A_{max}=2\Leftrightarrow x=y=1\)
\(x^2+y^2\ge0\Rightarrow x+y=x^2+y^2\ge0\)
\(A_{min}=0\) khi \(x=y=0\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
X,y,z là số dương thỏa mãn đk x+y+z=a Tìm giá trị nhỏ nhất của bt Q=(1+a/x)(1+a/y)(1+a/z) helppppppp
Đề là: \(Q=\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\) đúng không em nhỉ?
Ta có:
\(Q=\left(1+\dfrac{x+y+z}{x}\right)\left(1+\dfrac{x+y+z}{y}\right)\left(1+\dfrac{x+y+z}{z}\right)\)
\(=\dfrac{\left(x+x+y+z\right)\left(x+y+y+z\right)\left(x+y+z+z\right)}{xyz}\)
\(Q\ge\dfrac{4\sqrt[4]{x^2yz}.4\sqrt[4]{xy^2z}.4\sqrt[4]{xyz^2}}{xyz}=\dfrac{64xyz}{xyz}=64\)
\(Q_{min}=64\) khi \(x=y=z=\dfrac{a}{3}\)