K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 11 2021

Điều kiện: \(x\ge5\)

\(\dfrac{4\left(x-1\right)!}{4!.\left(x-5\right)!}-\dfrac{4\left(x-1\right)!}{3!\left(x-4\right)!}< \dfrac{5\left(x-2\right)!}{\left(x-4\right)!}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-4\right)}{6}-\dfrac{2\left(x-1\right)}{3}< 5\)

\(\Leftrightarrow x^2-9x-22< 0\)

\(\Rightarrow-2< x< 11\)

\(\Rightarrow x=\left\{5;6;7;8;9;10\right\}\)

8 tháng 10 2015

ĐK: \(n-1\ge4\)

áp dụng công thức tổ hợp và chỉnh hợp ta có

\(\frac{\left(n-1\right)!}{4!\left(n-5\right)!}-\frac{\left(n-1\right)!}{3!\left(n-4\right)!}-\frac{5}{4}\frac{\left(n-2\right)!}{\left(n-4\right)!}=0 \Rightarrow\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{4!}-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{3!}-\frac{5}{4}\left(n-2\right)\left(n-3\right)=0\Rightarrow\left(n-2\right)\left(n-3\right)\left(\frac{\left(n-3\right)\left(n-4\right)}{4!}-\frac{n-1}{3!}-\frac{5}{4}\right)=0\)

giải pt đối chiếu với đk của n ta suy ra đc giá trị n cần tìm

12 tháng 4 2020

Bạn sửa lại dòng thứ 5 của câu 1 giúp mình:

\(-\frac{1}{24}\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)

2)

\(Y_n=\frac{\frac{\left(n+4\right)!}{n!}}{\left(n+2\right)!}-\frac{143}{4.n!}\)

\(=\frac{\left(n+4\right)\left(n+3\right)}{n!}-\frac{143}{4n!}\)

\(=\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)

\(Y_n< 0\)

<=> \(\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)<0

<=> \(\left(2n+19\right)\left(2n-5\right)< 0\)

<=> \(-\frac{19}{2}< n< \frac{5}{2}\)

Đối chiếu với n \(\ge\)1 và n là số tự nhiên

ta có: n = 1 hoặc n = 2

Vậy các số hạng âm của dãy số ( Y_n) là:

\(Y_1=-\frac{63}{4};Y_2=-\frac{23}{8}\)

12 tháng 4 2020

1) \(X_n=\frac{5}{4}.\frac{\left(n-2\right)!}{\left(n-4\right)!}-\frac{\left(n-1\right)!}{4!\left(n-5\right)!}+\frac{\left(n-1\right)!}{3!\left(n-4\right)!}\)

\(=\frac{5}{4}.\left(n-2\right)\left(n-3\right)-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{24}+\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)

= \(\left(n-2\right)\left(n-3\right)\left(\frac{5}{4}-\frac{\left(n-1\right)\left(n-4\right)}{24}+\frac{n-1}{6}\right)\)

= \(\left(n-2\right)\left(n-3\right)\left(-\frac{n^2}{24}+\frac{3n}{8}+\frac{11}{12}\right)\)

= - \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)

Để \(X_n>0\)

<=> \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\) < 0

<=> n \(\in\left(-2;2\right)\cup\left(3;11\right)\)

Đối chiếu đk n \(\ge\)5

ta có n \(\in\) [ 5; 11 ) và n là số tự nhiên.

Các số hạng dương là:

\(X_5;X_6;...;X_{10}\) ( tự thay vào rồi tính kết quả nhé)

VD: \(X_5=\frac{5}{4}.A^2_3-C^4_4+C^3_4=\frac{21}{2}\)

NV
5 tháng 3 2022

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)

\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)

Đạo hàm 2 vế:

\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)

Thay \(x=1\)

\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)

\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)

\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)

\(\Rightarrow n=5\)

\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)

\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)

30 tháng 1 2022

a, đk : n khác 2 

b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)

Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)

Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)

c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 21-12-23-36-6
n31405-18-4

 

a: Để phân số A có nghĩa thì n-2<>0

hay n<>2

b: Thay n=0 vào A, ta được:

\(A=\dfrac{0+4}{0-2}=-2\)

Thay n=-2 vào A, ta được:

\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)

Thay n=4 vào A, ta được:

\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)

c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

4 tháng 12 2016

\(A=n^4-16n^2+64+36=n^4+20n^2+100-36n^2=\left(n^2+10\right)^2-36n^2=\left(n^2+6n+10\right)\left(n^2-6n+10\right)\)
A là số nguyên tố và \(n^2+6n+10>n^2-6n+10\) với mọi n nguyên dương
\(\Rightarrow\hept{\begin{cases}n^2-6n+10=1\\n^2+6n+10=A\end{cases}}\). Đến đây đơn giản rồi nhỉ

4 tháng 12 2016

Bài 1:

Ta có: \(a^2-ab+b^2=\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

Nên \(\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{4}}=\frac{a+b}{2}\)

\(\Rightarrow2\sqrt{a^2-ab+b^2}\ge a+b\left(1\right)\).Ta cũng có:

\(a^2-2ac+4c^2=\frac{3}{4}\left(a-2c\right)^2+\frac{1}{4}\left(a+2c\right)^2\ge\frac{1}{4}\left(a+2c\right)^2\)

Nên \(\sqrt{a^2-2ac+4c^2}\ge\frac{a+2c}{2}\left(2\right)\), tương tự ta cũng có \(\sqrt{b^2-2bc+4c^2}\ge\frac{b+2c}{2}\left(3\right)\)

Cộng theo vế của (1),(2) và (3) ta được

\(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ac+4c^2}+\sqrt{b^2-2bc+4c^2}\)

\(\ge a+b+\frac{a+2c}{2}+\frac{b+2c}{2}=4c+\frac{a+b}{2}+\frac{4c}{2}=4c+2c+2c=8c\)

Suy ra điều phải chứng minh

Dấu "=" khi \(\hept{\begin{cases}a=b\\a=2c\\b=2c\end{cases}}\Leftrightarrow a=b=2c\)

8 tháng 7 2021

Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)

\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)

Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)

Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)

a) \(P=1957\)

b) \(S=19.\)