Trong một phòng họp có 80 người ngồi họp được xếp đều ngồi trên các dãy ghế. Nếu ta bớt đi 2 dãy thì mỗi dãy còn lại phải xếp thêm 2 người mới đủ chỗ. Hỏi lúc đầu có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu người ngồi?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số chỗ ngồi ban đầu ở mỗi dãy là x
Theo đề, ta có: 80/x+2=80/x-2
=>80/(x+2)-80/x=-2
=>\(\dfrac{80x-80x-160}{x\left(x+2\right)}=-2\)
=>x^2+2x-80=0
=>x=8
Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]
=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)
Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2
Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)
Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)
=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a
=> 35a-70+2a\(^2\)-4a=35a
=> 2a\(^2\)-4a-70=0
=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp
Trường hợp 1 : a-1 = -6 => a = - 5 [loại]
Trường hợp 2 : a - 1 = 6 => a = 7
Còn đây bạn làm nốt tiếp
Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người
Gọi x là số dãy ghế; y là số người trên mỗi dãy ghế (x,y>0)
Ta có tổng cộng 80 người nên x*y =80 <=> x =80/y (1)
Nếu bớt đi 2 dãy ghế tức x-2 thì mỗi dãy còn lại phải xếp thêm 2 người tức y+2
Ta có: (x-2)*(y+2) = 80 (2)
Thay (1) vào (2) ta có: 2y^2 +4y -160 =0
<=> y=8 => x=10
Vậy có 10 dãy ghế và có 8 người trên mỗi dãy
Gọi x là số dãy ghế trong phòng họp ( x nguyên ; x>2)
Số người ngồi trên 1 dãy là \(\frac{80}{x}\)(người)
Nếu bới đi 2 dãy thì số dãy ghế còn lại là : x - 2 (dãy)
Số người ngồi trên mỗi dãy sẽ là: \(\frac{80}{x-2}\)(người )
Ta có phương trình :
\(\frac{80}{x-2}-\frac{80}{x}=2\Leftrightarrow\frac{40}{x-2}-\frac{40}{x}=1\Leftrightarrow x^2-2x-80=0\)
Giaỉ phương trình ta được \(x_1=10;x_2=-8\left(lọai\right)\)
Vậy số dãy ghế lúc đầu là 10 dãy và mỗi dãy xếp 8 người ngồi
Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10
Gọi số dãy lúc đầu là x
Theo đề, ta có: 70/(x-2)-70/x=4
=>(70x-70x+140)/(x^2-2x)=4
=>4x^2-8x-140=0
=>x=7
Gọi số dãy ghế lúc đầu là x(x \(\in\) N* , x > 0)
Số ghế mỗi dãy: \(\dfrac{70}{x}\) (ghế)
Nếu bớt đi 2 dãy ghế ngồi thì mỗi dãy còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.
\(\Rightarrow\left(x-2\right)\left(\dfrac{70}{x}+4\right)=70\)
\(\Rightarrow4x-\dfrac{140}{x}+62=70\)
\(\Rightarrow4x^2-140+62x=70x\) (do x \(\in\) N* )
\(\Rightarrow4x^2-8x-140=0\)
\(\Rightarrow x=-5\left(l\right);x=7\left(n\right)\)
Vậy lúc đầu phòng họp có 7 dãy ghế.
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
Gọi số dãy ghế là x (cái)
số người trong 1 dãy ghế là y (cái )
Ban đầu thìta có xy=100 (1)
Về sau thì (x+2)(y+2)=144 (2)
ta lấy (2)-(1) thì được xy+2x+2y+4-xy=144-100 suy ra 2x+2y=40 suy ra x+y=20
Kết hợp với (1), dùng định lý Viet về tổng và tích các nghiệm của phương trình bậc hai, suy ra x, y là nghiệm của phương trình X^2-20X+100=0, suy ra x=10, y=10
Kết luận: lúc đàu phòng có 10 dãy ghế (và mỗi dãy ghế có 10 người)
Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.