K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)

\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)

\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)

\(\Leftrightarrow6x=-3\)

hay \(x=-\dfrac{1}{2}\)

b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)

\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)

\(\Leftrightarrow2x^3+6x=2x^3+24x\)

\(\Leftrightarrow x=0\)

c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)

\(\Leftrightarrow12x=-11\)

hay \(x=-\dfrac{11}{12}\)

6 tháng 12 2021
(X-1)^3 = (1-x)^2
20 tháng 12 2021

1C

2A

25 tháng 12 2022

\(3\left(x-2\right)+4\left(x-1\right)=25\) 

\(\Leftrightarrow3x-6+4x-4=25\) 

\(\Leftrightarrow7x=35\) 

\(\Leftrightarrow x=5\)

25 tháng 12 2022

\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\) 

\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\) 

\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\) 

\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)

12 tháng 1 2020

\(\frac{1-x}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{\left[x\left(x^4+x^2+1\right)\right]}\)

\(\Leftrightarrow\frac{\left(1-x\right)x\left(x^2-x+1\right)\left(x^4+x^2+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)\(-\)\(\frac{x\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)\(=\)\(\frac{3\left(x^2-x+1\right)\left(x^2+x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)

\(\Rightarrow\left(1-x\right)x\left(x^2-x+1\right)\left(x^4+x^2+1\right)-x\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)=\)\(3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x-x^2\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)-\left(x^2-x\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)=\)\(\left(3x^2-3x+3\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x^3-x^2+x-x^4+x^3-x^2\right)\left(x^4+x^2+1\right)-\left(x^4+x^3+x^2-x^3-x^2-x\right)\left(x^4+x^2+1\right)=\) \(3x^4+3x^3+3x^2-3x^3-3x^2-3x+3x^2+3x+3\)

\(\Leftrightarrow\left(2x^3-2x^2+x-x^4\right)\left(x^4+x^2+1\right)-\left(x^4-x\right)\left(x^4+x+1\right)=3x^4+3x^2+3\)

\(\Leftrightarrow\left(x^4+x^2+1\right)\left(2x^3-2x^2+x-x^4-x^4+x\right)=3x^4+3x^2+3\)

\(\Leftrightarrow\left(x^4+x^2+1\right)\left(2x^3-2x^2+2x-2x^4\right)=3x^4+3x^2+3\)

\(\Leftrightarrow2x^7-2x^6+2x^5-2x^8+2x^5-2x^4+2x^3-2x+2x^3-2x^2+2x-2x^4-3x^4-3x^2-3=0\)

\(\Leftrightarrow2x^7-2x^6+4x^5-2x^8-7x^4+x^2-3=0\)

Đến đây thì chịu òi :^ Sr nha

13 tháng 1 2020

\(\frac{1-x}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

=> \(\left(1-x\right)\left(\frac{1}{x^2+x+1}+\frac{1}{x^2-x+1}\right)=\frac{3}{x\left(x^4+x^2+1\right)}\)

<=>\(\left(1-x\right)\left(2x^2+2\right).x=3\)

Do \(2x^2+2>0\)

=> \(\left(1-x\right).x>0\)

=> \(0< x< 1\)=> \(2x^2+2< 4\)

Pt<=> \(\left(x-x^2\right)\left(2x^2+2\right)=3\)

Mà \(x-x^2\le\frac{1}{4};2x^2+2< 4\)

=> \(VT< 1\)

=> PT vô nghiệm 

b: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)

\(\Leftrightarrow12x=12\)

hay x=2

d: Ta có: \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)

\(\Leftrightarrow3x^2-6x+3-3x^2+15x=1\)

\(\Leftrightarrow9x=-2\)

hay \(x=-\dfrac{2}{9}\)

26 tháng 7 2020

\(\left(x-2\right):2.3=6\)

\(\Leftrightarrow\left(x-2\right):2=2\)

\(\Leftrightarrow\left(x-2\right)=4\)

\(\Leftrightarrow x=4+2=6\)

c) ta có

\(\left[\left(2x+1\right)+1\right]m:2=625\)

\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)

\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)

\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)

\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)

\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)

\(\Leftrightarrow\left(2x+1\right)^2=1250\)

...

2

\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)

\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)

\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)

5 tháng 9 2021

d. (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1

<=> x3 - 9 + (x2 + 2x)(2 - x) = 1

<=> x3 - 9 + 2x2 - x3 + 4x - 2x2 = 1

<=> 4x = 10

<=> x = \(\dfrac{10}{4}=\dfrac{5}{2}\)

5 tháng 9 2021

d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1

\(<=> x^3-27-x(x^2-4)=1\)

\(<=> x^3-27-x^3-4x=1<=>-4x=28<=> x=-7\)

=> ptrình có tập nghiệm S={-7}

e) (x + 1)^3 - (x - 1)^3 - 6(x - 1)^2 = -19

\(<=> x^3+3x^2+3x+1-(x^3-3x^2+3x-1)-6(x^2-2x+1)+19=0\)

\(<=>x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)

\(<=>12x=15<=>x=12/15 \)

=> ptrình có tập nghiệm S={12/15}

4 tháng 4 2023

\(1.x-\dfrac{2}{3}\times\left(x+9\right)=1\)

\(x-\dfrac{2}{3}\times x-6=1\)

\(x\times\left(1-\dfrac{2}{3}\right)=7\)

\(x\times\dfrac{1}{3}=7\)

\(x=21\)

\(2.x-\dfrac{11}{15}=\dfrac{3+x}{5}\)

\(\dfrac{15x}{15}-\dfrac{11}{15}=\dfrac{9+3x}{15}\)

\(15x-11=9+3x\)

\(12x=20\)

\(x=\dfrac{5}{3}\)

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1