Tìm số tự nhiên n để các số sau là các số nguyên tố cùng nhau
a) 4n+3 và 2n+3
b) 7n+13 và 2n +4
c) 18n + 3 và 21n + 7
Giúp mk T_T please
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
\(4n+3;2n+3=d\left(d\inℕ^∗\right)\)
\(4n+3⋮d\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
Suy ra : \(4n+3-4n-6⋮d\Rightarrow-3⋮d\)
Vay ta co dpcm
c,Đặt \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)
\(9n+24⋮d\)
\(3n+4\Rightarrow9n+12⋮d\)
Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)
Do 12 có 2 nghiệm trở lên nên đây ko phải là 2 số nguyên tố cùng nhau
em là người đầu tiên đọc được nhưng tiếc là em mới lớp 4
a) Giả sử 4n + 34n + 3 và 2n + 32n + 3 cùng chia hết cho số nguyên tố d thì:
2(2n + 3) − (4n + 3) ⋮ d → 3 ⋮ d → d = 3
Để (2n + 3,4n + 3) = 1 thì d≠3. Ta có:
4n + 3 không chia hết cho 3 nếu 4n không chia hết cho 3 hay n không chia hết cho 3.
Kết luận: Với n không chia hết cho 3 thì 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau.
b) Giả sử 7n + 13 và 2n + 4 cùng chia hết cho số nguyên tố d.
Ta có: 7(2n + 4) − 2(7n + 13) ⋮ d → 2 ⋮ d→ d ∈ {1; 2}
Để (7n + 13, 2n + 4) = 1 thì d ≠ 2
Ta có: 2n + 4 luôn chia hết cho 2 khi đó 7n + 13 không chia hết cho 2 nếu 7n chia hết cho 3 hay n chia hết cho 2..
Kết luận: Với n chẵn thì thì 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.
cGiả sử 18n + 3 và 21n + 7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n + 7) − 7(18n + 3) ⋮ d → 21 ⋮ d → d ∈ {3; 7}. Hiển nhiên d ≠ 3 vì 21n + 721n + 7 không chia hết cho 3.
Để (18n + 3, 21n + 7) = 1 thì d ≠ 7 tức là 18n + 3 không chia hết cho 7, nếu 18n + 3 − 21 không chia hết cho 7 ↔ 18(n − 1) không chia hết cho 7↔n − 1 không chia hết cho 7 ↔ n ≠ 7k + 1 (k ∈ N).
Kết luận: Với n ≠ 7k + 1 (k ∈ N) thì 18n + 3 và 21n + 7 là hai số nguyên tố cùng nhau.