Cho một số có hai chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, số này viết là a b ¯ . Giả sử a > b
a) Em hãy chứng tỏ rằng hiệu ( a b ¯ - b a ¯ ) luôn luôn chia hết cho 9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11
a) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10 x a + b) - (10 x b + a)
= (10 x a - a) - (10 x b - b)
= 9 x a - 9 x b
= 9 x (a - b) \(⋮\)9
=> (ab - ba) \(⋮\)9 (đpcm)
b) Ta có : ab + ba = a0 + b + b0 + a
= 10 x a + b + b x 10 + a
= (10 x a + a) + (10 x b + b)
= 11 x a + 11 x b
= 11 x (a + b) \(⋮\)11
=> (ab + ba) \(⋮\)11 (đpcm)
a) Ta có : ab - ba
= ( 10 x a + b ) - ( 10 x b + a )
= ( 10 x a - a ) - ( 10 x b - b )
= 9 x a - 9 x b
= 9 x ( a - b )
\(\Rightarrow\)ab - ba chia hết cho 9
b) Ta có: ab + ba
= ( 10 x a + b ) + ( 10 x b + a )
= ( 10 x a + a ) + ( 10 x b + b )
= 11 x a + 11 x b
= 11 x ( a + b )
\(\Rightarrow\)ab + ba chia hết cho 11
Nhớ k chị nha. Chúc em học tốt.
a)Ta có:
ab-ba =a.10+b-b.10-a
=a.9-b.9
Mà a > b nên thương nhỏ nhất của hai số sẽ bằng 9.
=> ab-ba luôn chia hết cho 9
b) ab+ba =a.10+b+b.10+a
=a.11+b.11
=(a+b).11
=> ab+ba luôn chia hết cho 11
a) ab=a.10+b
ba=b.10+a
ab-ba=10a+b-10b-a
=9a-9.b
Giả sử a lớn hơn b n đơn vị, ta có:
(b+n)9-9b
=n.9 => ab-ba luôn chia hết cho 9
b) ab=10a+b
ba=10b+a
ab+ba=10a+a+10b+b
=11a+11b
=(a+b)11
=> ab+ba luôn chia hết cho 11
chúc bạn học tốt nha
Ta có: ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9 x (a - b)
Vì a > b nên a - b dương => 9 x (a - b) chia hết cho 9
ab + ba = 10a + b + 10b + a = 11a + 11b = 11 x (a + b) chia hết cho 11
ab - ba =10a+b-10b-a=9a-9b=9.(a-b) chia hết cho 9
ab + ba = 10a+b+10b+a = 11a+11b = 11.(a+b) chia hết cho 11