Dựng hình thang cân ABCD có AB//CD, biết hai đáy AB = 2cm, CD = 4cm, đường cao AH = 2cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADC dựng được vì biết ba cạnh AD = 2cm, CD = 4cm, AC= 3,5cm. Điểm B thỏa mãn 2 điều kiện:
- B nằm trên đường thẳng đi qua A và song song với CD.
- B cách D một khoảng bằng 3,5cm( vì ABCD là hình thang cân nên hai đường chéo bằng nhau).
Cách dựng:
- Dựng ∆ ADC biết:
AD = 2cm, AC = 3,5cm, CD = 4cm.
- Dựng tia Ax // CD. Ax nằm trong nửa mặt phẳng bờ AD chứa điểm C.
- Dựng cung tròn tâm D bán kính 3,5cm. Cung này cắt Ax tại B. Nối CB, ta có hình thang ABCD cần dựng.
Chứng minh:
Tứ giác ABCD là hình thang vì AB //CD.
AC = BD = 3,5cm
Vậy hình thang ABCD là hình thang cân.
Hình thang cân ABCD có: AD = 2cm, CD = 4cm, AC = 3,5cm thỏa mãn yêu cầu bài toán.
Biện luận: Tam giác ADC luôn dựng được nên hình thang ABCD luôn dựng được. Cung tròn tâm D bán kính 3,5cm cắt Ax tại 1 điểm nên ta dựng được một hình thang thỏa mãn yêu cầu bài toán.
Phân tích:
Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Qua A kẻ đường thẳng song song với BC cắt CD tại E. Hình thang ABCE có 2 cạnh bên song song nên AB = EC = 2cm do đó DE = 2cm
Tam giác ADE dựng được vì biết 2 góc kề với một cạnh.
Điểm C nằm trên tia DE cách D một khoảng bằng 4cm.
Điểm B thỏa mãn hai điều kiện:
- B nằm trên đường thẳng đi qua A và song song với CD.
- B nằm trên đường thẳng đi qua C và song song với AE.
Cách dựng:
- Dựng ΔADE biết DE = 2cm, ∠ D = 70 0 , ∠ E = 50 0
- Trên tia DE lấy điểm C sao cho DC = 4cm
- Dựng tia Ax // CD, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm C
- Dựng tia Cy // AE, Cy nằm trên nửa mặt phẳng bờ CD chứa điểm A.
Cy cắt Ax tại B. Hình thang ABCD cần dựng.
Chứng minh:
Tứ giác ABCD là hình thang vì AB // CD.
CD = CE + ED ⇒ CE = CD – ED = 4 – 2 = 2 (cm)
Hình thang ABCE có hai cạnh bên AE // CB
⇒ AB = CE = 2 (cm)
∠ C = ∠ E = 50 0 (hai góc đồng vị)
∠ D = 70 0
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADE luôn dựng được, hình thang ABCD luôn dựng được. Ta dựng được một hình thang thỏa mãn điều kiện bài toán.
Phân tích:
Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.
Qua A kẻ đường thẳng song song với BC cắt CD tại E ta thấy tam giác AED xác định vì biết ba cạnh, ta cần xác định đình B và C.
- Đỉnh C nằm trên tia DE, cách D một khoảng bằng 4cm.
- Đỉnh B nằm trên đường thẳng đi qua A song song với đường thẳng DE và cách A một khoảng bằng lcm.
Cách dựng:
- Dựng ∆ ADE biết AD = 2cm, DE = 3cm, AE = 3cm
- Trên tia DE dựng điểm C sao cho DC = 4cm
- Dựng đường thẳng đi qua A và song song với DC, lấy điểm B sao cho AB = lcm. Nối BC ta có hình thang ABCD cần dựng.
Chứng minh:
Thật vậy, theo cách dựng ta có AB // CD nên tứ giác ABCD là hình thang.
Ta có: AD = 2cm, DC = 4cm, AB= lcm, hình thang ABCE có hai cạnh đáy AB = EC = 1cm nên BC = AE = 3cm.
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADB luôn dựng được nên hình thang ABCD dựng được, bài toán có một nghiệm hình.
hân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.
Qua A kẻ đường thẳng song song với BC cắt CD tại E ta thấy tam giác AED xác định vì biết ba cạnh, ta cần xác định đỉnh B và C
– Đỉnh C nằm trên tia DE, cách D một khoảng bẳng 4cm
– Đỉnh B nằm trên đường thẳng đi qua A song song với đường thẳng DE và cách A một khoảng bằng 1cm.
Cách dựng:
QUẢNG CÁO
– Dựng ∆ ADE biết AD = 2cm, DE = 3cm, AE = 3cm
– Trên tia DE dựng điểm C sao cho DC = 4cm
– Dựng đường thẳng đi qua A và song song với DC, lấy điểm B sao cho AB = 1cm. Nối BC ta có hình thang ABCD cần dựng
Chứng minh: Thật vậy theo cách dựng ta có AB // CD nên tứ giác ABCD là hình thang.
Ta có: AD = 2cm, DC = 4cm, AB = 1cm, hình thang ABCE có hai cạnh đáy AB = EC = 1cm nên BC = AE = 3cm.
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADE luôn dựng được nên hình thang ABCD dựng được, bài toán có một nghiệm hình.
Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADH dựng được vì biết hai cạnh góc vuông AH = 2cm và HD = lcm, ∠ H = 90 0 và đáy AB < CD nên ∠ D < 90 0 . Điểm H nằm giữa D và C.
Điểm C nằm trên tia đối tia HD và cách H một đoạn bằng 3 cm
Điểm B thỏa mãn hai điều kiện:
- B nằm trên đường thẳng đi qua A và song song với DH.
- B cách A một khoảng bằng 2cm
Cách dựng:
- Dựng ΔAHD biết ∠ H = 90 0 , AH = 2cm , HD = lcm
- Dựng tia đối của tia HD
- Trên tia đối của tia HD dựng điểm C sao cho HC = 3cm
- Dựng tia Ax // DH, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm H.
- Trên tia Ax, dựng điểm B sao cho AB = 2cm . Nối CB ta có hình thang ABCD cần dựng.
Chứng minh:
Tứ giác ABCD là hình thang vì AB//CD.
Kẻ BK ⊥ CD. Tứ giác ABKH là hình thang có 2 cạnh bên song song nên: BK = AH và KH = AB
Suy ra: KC = HC - KH = HC - AB = 3 - 2 = 1 (cm)
Suy ra: ∆ AHD = ∆ BKC (c.g.c) ⇒ ∠ D = ∠ C