Dùng tính chất cơ bản của phân thức, hãy điền một đa thức thích hợp vào các chỗ vào các chỗ trống trong mỗi đẳng thức sau: x 2 + 8 2 x - 1 = 3 x 2 + 24 x . . . . . .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x - x 2 = x 1 - x
(Tử thức của phân thức bên phải bằng tử thức của phân thức bên trái chia cho (1 – x).
Do đó ta chia cả tử và mẫu của phân thức bên trái cho 1 – x thì thu được phân thức bên phải.)
Vậy đa thức cần điền là -5x – 5.
3 y - x 2 = 3 . x - y 2 = x - y . 3 x - y
(Mẫu thức của phân thức bên trái bằng mẫu thức của phân thức bên phải chia cho 3(x – y)
Do đó ta chia cả tử và mẫu của phân thức bên phải cho 3(x – y) để thu được phân thức bên trái)
Vậy đa thức cần điền là x.
y 2 - x 2 = y - x y + x
(Mẫu thức của phân thức bên phải bằng mẫu thức của phân thức bên trái nhân với (y – x).
Do đó ta nhân cả tử và mẫu của phân thức bên trái với (y – x) để thu được phân thức bên phải)
Vậy đa thức cần điền là x - y 3
Ta để ý : x2 – 1 = (x – 1)(x + 1)
Do đó ta cần chia cả tử và mẫu của phân thức thứ nhất cho x – 1.
Mà ta có :
x5 – 1 = x5 – x4 + x4 – x3 + x3 – x2 + x2 – x + x – 1
= x4(x – 1) + x3(x – 1) + x2(x – 1) + x(x – 1) + (x – 1)
= (x – 1)(x4 + x3 + x2 + x + 1)
Do đó :
Vậy đa thức cần điền là x4 + x3 + x2 + x + 1.
tính chất quan trọng phần thức với
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\Rightarrow c=\dfrac{ad}{b}\)áp vào
\(\dfrac{x^5-1}{x^2-1}=\dfrac{A}{x+1}\Rightarrow A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{x^2-1}\) {x khác +-1}
\(A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left[\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\right]\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\left(x^4+x^3+x^2+x+1\right)\)
Vậy đa thức cần điền là
\(A=\left(x^4+x^3+x^2+x+1\right)\)
3 x 3 + 24 x = 3 x . x 2 + 8
(Tử thức của phân thức bên phải bằng tử thức của phân thức bên trái nhân với 3x.
Do đó ta nhân cả tử và mẫu của phân thức bên trái với 3x thì thu được phân thức bên phải)
Vậy đa thức cần điền là 6 x 2 - 3 x