Bóng của một ống khói nhà máy trên mặt đất có độ dài là 36,9m. Cùng thời điểm đó, một thanh sắt cao 2,1m cắm vuông góc với mặt đất có bóng dài 1,62m. Tính chiều cao của ống khói (h.52).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ống khói và thanh sắt đều vuông góc với mặt đất nên hai tam giác ABC và A'B'C' đều là tam giác vuông.
Vì cùng một thời điểm tia sáng chiếu nên ta suy ra góc ACB = góc A'C'B'
=> ΔABC ∼ ΔA'B'C' nên
Gọi chiều cao cột điện là x (m); (x > 0).
Giả sử cột điện là AC, có bóng trên mặt đất là AB.
Thanh sắt là A'C', có bóng trên mặt đất là A'B'.
Vì cột điện và thanh sắt đều vuông góc với mặt đất nên hai tam giác ABC và A'B'C' đều là tam giác vuông.
Vì cùng một thời điểm tia sáng tạo với mặt đất một góc bằng nhau
Vậy cột điện cao 15,75m.
Lời giải
Giả sử cột điện là AC, có bóng trên mặt đất là AB.
Thanh sắt là A'C', có bóng trên mặt đất là A'B'.
Vì cột điện và thanh sắt đều vuông góc với mặt đất nên hai tam giác ABC và A'B'C' đều là tam giác vuông.
Vì cùng một thời điểm tia sáng chiếu nên ta suy ra góc ACB = góc A'C'B'
Bài toán được biểu diễn như hình sau :
Trong đó : AB là chiều cao ống khói
DE là chiều cao của người kia
AC là bóng của ống khói
DC là bóng của người kia
BC là hướng của ánh sáng
Dễ chứng minh ΔABC ~ ΔDEC (g.g)
=> \(\dfrac{AB}{DE}=\dfrac{BC}{EC}=\dfrac{AC}{DC}\)
=> \(AB=\dfrac{AC\cdot DE}{DC}=\dfrac{40,6\cdot1,65}{1,45}=46,2\left(m\right)\)
Vậy chiều cao của ống khói là 46,2m
Gọi h là chiều cao cột điện, ta có: \(\frac{2,1}{h}=\frac{0,6}{4,5}=>h=\frac{2,1x4,5}{0,6}=15,75m\)
(Hình ảnh chỉ mang tính chất minh họa)
Giả sử thanh sắt là A'B', có bóng là A'C'.
Vì ống khói và thanh sắt đều vuông góc với mặt đất nên hai tam giác ABC và A'B'C' đều là tam giác vuông.
Vì cùng một thời điểm nên tia sáng tạo với mặt đất các góc bằng nhau
Vậy chiều cao ống khói là 47,83m.