Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi I là trung điểm BC
a, Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn
b, Chứng minh A M 2 = A B . A C
c, Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC
d, Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cố định
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)