K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{40}=k\Leftrightarrow x=15k;y=20k;z=40k\)

\(xy=1200\\ \Leftrightarrow300k^2=1200\\ \Leftrightarrow k^2=4\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30;y=40;z=80\\x=-30;y=-40;z=-80\end{matrix}\right.\)

5 tháng 11 2021

suphu cho con hỏi sao k=2 và-2 ạ cái kia con hỉu rồi :>

25 tháng 11 2017

\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)

\(\Rightarrow\dfrac{x-9}{15}=\dfrac{y-12}{20}=\dfrac{z-24}{40}=k\)

\(\Rightarrow\left(15k+9\right)\left(20k+12\right)=1200\)

\(\Rightarrow3.4\left(5k+3\right)\left(5k+3\right)=1200\)

\(\Rightarrow\left(5k+3\right)\left(5k+3\right)=1200:3:4\)

\(\Rightarrow\left(5k+3\right)^2=100\)

\(\Rightarrow\left[{}\begin{matrix}5k+3=10\\5k+3=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=\dfrac{7}{5}\\k=\dfrac{-13}{5}\end{matrix}\right.\)

+) Với \(k=\dfrac{7}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}.15+9\\y=\dfrac{7}{5}.20+12\\z=\dfrac{7}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=80\end{matrix}\right.\)

+) Với \(k=\dfrac{-13}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-13}{5}.15+9\\y=\dfrac{-13}{5}.20+12\\z=\dfrac{-13}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-30\\y=-40\\z=-80\end{matrix}\right.\)

Vậy ................................

Chúc bạn học tốt!

2 tháng 9 2018

\(a.\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\&xy=1200\)

\(\Leftrightarrow\dfrac{15}{20}=\dfrac{x-9}{y-12}\Leftrightarrow\dfrac{3}{4}=\dfrac{x-9}{y-12}\)

\(\Rightarrow\dfrac{9}{12}=\dfrac{x-9}{y-12}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{9}{12}=\dfrac{x-9}{y-12}=\dfrac{x-9+9}{y-12+12}=\dfrac{x}{y}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{xy}{y^2}=\dfrac{x^2}{xy}\)

Từ \(\dfrac{3}{4}=\dfrac{xy}{y^{^2}}\Rightarrow\dfrac{3}{4}=\dfrac{1200}{y^2}\Rightarrow y^2=1200.\dfrac{4}{3}=1600\)

\(\Rightarrow y=\sqrt{1600}=\pm40\)

+ TH1: \(y=40\Rightarrow x=30\)

\(\dfrac{15}{x-9}=\dfrac{40}{z-24}\Rightarrow z=80\) (tự giải pt)

+ TH2: \(y=-40\Rightarrow x=-30\)

\(\dfrac{15}{x-9}=\dfrac{40}{z-4}\Rightarrow z=-80\) (tự giải pt)

Vậy, các cặp \(\left(x;y;z\right)\) thỏa mãn là \(\left(30;40;80\right)\&\left(-30;-40;-80\right)\)

2 tháng 9 2018

\(b.15x=-10y=6z\&xyz=30000\)

\(\Rightarrow\left\{{}\begin{matrix}15x=-10y\\-10y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-10}=\dfrac{y}{15}\\\dfrac{y}{6}=\dfrac{z}{-10}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-20}=\dfrac{y}{30}\\\dfrac{y}{30}=\dfrac{z}{-50}\end{matrix}\right.\Rightarrow\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}\)

Đặt \(\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}=k\Rightarrow x=-20k;y=30k;z=-50k\)

\(\Rightarrow xyz=30000\Rightarrow-20k.30k.\left(-50k\right)=30000\Rightarrow30000k^3=30000\)

\(\Rightarrow k^3=1\Rightarrow k=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=30\\z=-50\end{matrix}\right.\)

5 tháng 11 2021

đề thiếu rồi bạn

5 tháng 11 2021

chứng tỏ chủ câu hỏi ko hiểu đề :>

5 tháng 11 2021

??

 

5 tháng 11 2021

Đặt \(\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}=k\Leftrightarrow x=40k;y=20k;z=28k\)

\(xyz=22400\\ \Leftrightarrow22400k^3=22400\\ \Leftrightarrow k^3=1\Leftrightarrow k=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)

23 tháng 8 2021

7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)

Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)

\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)

 

23 tháng 8 2021

4) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)

\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)

\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)

\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)

6) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)

\(\dfrac{x+11}{13}=1\Rightarrow x=2\)

\(\dfrac{y+12}{13}=1\Rightarrow y=1\)

\(\dfrac{z+13}{15}=1\Rightarrow z=2\)

7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)

\(\Rightarrow x=4k,y=5k\)

\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)

\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)

Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)

28 tháng 10 2017

\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\\ \Leftrightarrow \frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\\ \Leftrightarrow \frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\\ \Leftrightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{40}\\\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\\ \Rightarrow x=15k;y=20k;z=40k\\ xy=1200\\ \Leftrightarrow 15k.20k=300k^2=1200\\ \Leftrightarrow k^2=4\)

\(\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ k=2\Rightarrow\left\{{}\begin{matrix}x=15k=15.2=30\\y=20k=20.2=40\\z=40k=40.2=80\end{matrix}\right.\\ k=-2\Rightarrow\left\{{}\begin{matrix}x=15k=15.\left(-2\right)=-30\\y=20k=20.\left(-2\right)=-40\\z=40k=40.\left(-2\right)=-80\end{matrix}\right.\)

28 tháng 10 2017

\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)

\(\Rightarrow\dfrac{x-9}{15}=\dfrac{y-12}{20}=\dfrac{z-24}{40}=k\)

\(\Rightarrow\left(15k+9\right)\left(20k+12\right)=1200\)

\(\Rightarrow3.4\left(5k+3\right)\left(5k+3\right)=1200\)

\(\Rightarrow\left(5k+3\right)\left(5k+3\right)=1200:3:4\)

\(\Rightarrow\left(5k+3\right)^2=100\)

\(\Rightarrow\left[{}\begin{matrix}5k+3=10\\5k+3=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=\dfrac{7}{5}\\k=\dfrac{-13}{5}\end{matrix}\right.\)

+) Với \(k=\dfrac{7}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}.15+9\\y=\dfrac{7}{5}.20+12\\z=\dfrac{7}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=80\end{matrix}\right.\)

+) Với \(k=\dfrac{-13}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-13}{5}.15+9\\y=\dfrac{-13}{5}.20+12\\z=\dfrac{-13}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-30\\y=-40\\z=-80\end{matrix}\right.\)

Vậy .................

16 tháng 3 2017

\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)

\(\Rightarrow\dfrac{x-9}{15}=\dfrac{y-12}{20}=\dfrac{z-24}{40}=k\)

\(\Rightarrow\left(15k+9\right)\left(20k+12\right)=1200\)

\(\Rightarrow3.4\left(5k+3\right)\left(5k+3\right)=1200\)

\(\Rightarrow\left(5k+3\right)\left(5k+3\right)=1200:3:4\)

\(\Rightarrow\left(5k+3\right)^2=100\)

\(\Rightarrow\left[{}\begin{matrix}5k+3=10\\5k+3=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=\dfrac{7}{5}\\k=-\dfrac{13}{5}\end{matrix}\right.\)

+) Với \(k=\dfrac{7}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}.15+9\\y=\dfrac{7}{5}.20+12\\z=\dfrac{7}{5}.40+24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=80\end{matrix}\right.\)

+) Với \(k=-\dfrac{13}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{5}.15+9\\y=-\dfrac{13}{5}.20+12\\z=-\dfrac{13}{5}.40+24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-30\\y=-40\\z=-80\end{matrix}\right.\)

Vậy...................................

16 tháng 3 2017

Ta có: (dfrac{15}{x-9}=dfrac{20}{y-12}=dfrac{40}{z-24})

(Rightarrowdfrac{x-9}{15}=dfrac{y-12}{20}=dfrac{z-24}{40})

(Rightarrowdfrac{x}{15}-dfrac{3}{5}=dfrac{y}{20}-dfrac{3}{5}=dfrac{z}{40}-dfrac{3}{5})

(Rightarrowdfrac{x}{15}=dfrac{y}{20}=dfrac{z}{40})

Đặt (dfrac{x}{15}=dfrac{y}{20}=dfrac{z}{40}=k)

(Rightarrowleft[{}egin{matrix}x=15k\y=20k\z=40kend{matrix} ight.) (left(1 ight))

Thay (left(1 ight)) vào đề bài:

(15k.20k=1200)

(Rightarrow300k^2=1200)

(Rightarrow k^2=4Rightarrow k=pm2)

Khi (k=2) thì: (left[{}egin{matrix}x=15.2=30\y=20.2=40\z=40.2=80end{matrix} ight.)

Khi (k=-2) (thì:) (left[{}egin{matrix}x=15left(-2 ight)=-30\y=20left(-2 ight)=-40\z=40left(-2 ight)=-80end{matrix} ight.)

Vậy ta tìm đc 2 cặp giá trị (x,y,z) thỏa mãn đề bài:

(left[{}egin{matrix}x=30\y=40\z=80end{matrix} ight.)(left[{}egin{matrix}x=-30\y=-40\z=-80end{matrix} ight.).