K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
6 tháng 12 2018

hình như trên

+)Ta có: ΔDMB=ΔENC ( g-c-g) ( Vì MBD^=NCE^ cùng bằng ACB^)

Nên MD = NE.

+)Xét ΔDMI và ΔENID^=E^=900,MD=NE(cmt)

MID^=NIE^( Hai góc đối đỉnh)

Nên ΔDMI=ΔENI( cgv - gn)

⇒MI=NI
+)Từ B và C kẻ các đường thẳng lần lượt vuông

Góc với AB và AC cắt nhau tại J.

Ta có: ΔABJ=ΔACJ(g−c−g)⇒JB=JC

Nên J thuộc AL đường trung trực ứng với BC

Mặt khác : Từ ΔDMB=ΔENC( Câu a)
Ta có : BM = CN
            BJ = CJ ( cm trên)

MBJ^=NCJ^=900

Nên ΔBMJ=ΔCNJ ( c-g-c)

 ⇒MJ=NJ hay đường trung trực của MN

Luôn đi qua điểm J cố định.

6 tháng 12 2018

hình nè

1 tháng 2 2017

vẽ hình dùm mk nha bạn

1 tháng 2 2017

Nhưng mik ko bít lm thì mí hỏi chớ lm sao mà mik bít vẽ hình

2 tháng 4 2016

a) xét tam giác MDB vuông và tam giác NEC vuông có

BD=EC(gt),góc MBD=góc NCE( cùng bằng góc ACB)

=> tam giác MDB=tam giác NEC (cgv-gnk)

=> DM=EN

b) ta có góc DMI +góc MID=90 độ,góc ENI+góc EIN=90 độ

mà góc MID =góc NIE(dđ)

=> góc DMI=góc ENI 

xét tam giác vuong MDI =tam giác vuong ENI (cgv-gnk)

=> MI=IN

mà I thuộc MN=> I là trung điểm của MN

c) gọi đường thẳng vuông góc với MN tại I là PI

ta có PI vừa là đường cao vừa là trung tuyến (PI vuong MN,I là tđ MN)

=> I cố định 

=> PI luôn đi qua 1 điểm cố định