Cho hình vuông ABCD cạnh 18 cm. Các điểm M,N lần lượt trên các cạnh AB, AD sao cho AM = DN = x.
a) Tính diện tích tam giác AMN theo x.
b) Tìm x để diện tích tam giác AMN bằng 7 81 diện tích hình vuông ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt AM=x; AN=y
MN^2=AM^2+AN^2
=>\(MN=\sqrt{x^2+y^2}\)
\(P_{AMN}=AM+AN+MN=x+y+\sqrt{x^2+y^2}=2a\)
và x+y>=2*căn xy; \(\sqrt{x^2+y^2}>=\sqrt{2xy}\)
=>\(2a=x+y+\sqrt{x^2+y^2}>=2\sqrt{xy}+\sqrt{2xy}\)
=>\(2a>=\sqrt{xy}\left(2+\sqrt{2}\right)\)
=>\(\sqrt{xy}< =\dfrac{2a}{2+\sqrt{2}}\)
=>\(S_{AMN}=\dfrac{1}{2}xy< =\dfrac{1}{2}\cdot\left(\dfrac{2a}{2+\sqrt{2}}\right)^2=\left(3-2\sqrt{2}\right)a^2\)
Dấu = xảy ra khi \(x=y=\left(2-\sqrt{2}\right)a\)
SAMN = \(\dfrac{1}{2}\) SAMC (vì hai tam giác có chung đường cao hạ từ đỉnh M xuống đáy AC và AN = \(\dfrac{1}{2}\)AC)
SAMC = \(\dfrac{3}{4}\) SABC (vì hai tam giác có chung đường cao hạ từ đỉnh C xuống đáy AB và (AM = \(\dfrac{3}{4}\) AB)
⇒SAMN = SABC \(\times\) \(\dfrac{3}{4}\) \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{3}{8}\) \(\times\) SABC
SABC = 48 : \(\dfrac{3}{8}\) = 128 (cm2)
Kết luận diện tích tam giác ABC là 128 cm2