Cho hàm số y= f( x) =ax4+ bx2+ c ( a> 0) có đồ thị (C), đồ thị hàm số y= f’(x). Đồ thị hàm số y= f( x) tiếp xúc với trục hoành tại hai điểm. Tính diện tích của hình phẳng giới hạn bởi đồ thị (C) và trục hoành?
A. 7 15
B. 8 15
C. 14 15
D. 16 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.
Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số y= f’ (x) đi qua 3 điểm
( -1; 0) ; (3; 0) ; (1; -4)
Thay tọa độ 3 điểm này vào hàm f’ ta tìm được: a= 1/3; b= -1; c= -3.
Suy ra: f’ (x) = x2-2x-3 và f(x) = 1/3.x3-x2-3x+d.
Do (C) tiếp xúc với đường thẳng y= -9 tại điểm có hoành độ dương nên ta có:
F’(x) =0 khi và chỉ khi x=3 ( x= -1 bị loại vì âm)
Như vậy (C) đi qua điểm (3; -9) ta tìm được d=0.
Vậy hàm số đề bài cho là f(x) = 1/3.x3-x2-3x.
Xét phương trình trình hoành độ giao điểm và trục hoành:
. 1 3 x 3 - x 2 - 3 x = 0 ⇔ x = 0 ; x = 3 ± 3 5 2 S = ∫ 3 - 3 5 2 3 + 3 5 2 1 3 x 3 - x 2 - 3 x d x = 29 , 25
Chọn C.
Đáp án D
Dựa vào đồ thị hàm số y = f ' ( x ) ⇒ f ' x = 3 x 2 - 1
Khi đó f x = ∫ f ' x d x = x 3 - 3 x + C .
Điều kiện đồ thị hàm số f(x) tiếp xúc với đường thẳng y = 4 là:
f x = 4 f x = 0 ⇒ x 3 - 3 x + C = 4 3 x 2 - 1 = 0 ⇔ x = - 1 C = 2 (Do x < 0 suy ra f x = x 3 - 3 x + 2 C
Cho C ∩ O x ⇒ hoành độ các giao điểm là x = -2,x = 1
Khi đó S = ∫ - 2 1 x 3 - 3 x + 2 d x = 27 4 .
Đáp án D
Phương trình hoành độ giao điểm của đồ thị f ( x ) và Ox: a x 4 + b x 2 + c = 0 .
Để phương trình có bốn nghiệm
Gọi x 1 , x 2 , x 3 , x 4 lần lượt là bốn nghiệm của phương trình a x 4 + b x 2 + c = 0 và x 1 < x 2 < x 3 < x 4 . Không mất tính tổng quát, giả sử a > 0 .
Khi đó
Suy ra x 1 = - - 5 b 6 a ; x 2 = - - b 6 a ; x 3 = - b 6 a ; x 4 = - b 6 a .
Do đồ thị hàm số f ( x ) nhận trục tung làm trục đối xứng nên ta có:
Suy ra
Vậy S 1 = S 2 hay S 1 S 2 = 1 .
Đáp án D
Phương trình hoành độ giao điểm của đồ thị f(x) và Ox: a x 4 + b x 2 + c = 0 .
Để phương trình có bốn nghiệm
⇔ b 2 − 4 a c > 0 − b a > 0 c a > 0 ⇔ b 2 − 5 9 b 2 > 0 − b a > 0 c a > 0 ⇔ b ≠ 0 − b a > 0 c a > 0
Gọi x 1 , x 2 , x 3 , x 4 lần lượt là bốn nghiệm của phương trình a x 4 + b x 2 + c = 0 và x 1 < x 2 < x 3 < x 4 . Không mất tính tổng quát, giả sử a>0.
Khi đó x 2 = − b + 2 b 3 2 a = − b 6 a x 2 = − b − 2 b 3 2 a = − 5 b 6 a , b < 0 .
Suy ra
x 1 = − − 5 b 6 a ; x 2 = − − b 6 a ; x 3 = − b 6 a ; x 4 = − 5 b 6 a
Do đồ thị hàm số f(x) nhận trục tung làm trục đối xứng nên ta có:
S 1 = ∫ x 1 x 2 f x d x + ∫ x 3 x 4 f x d x = − 2 ∫ x 3 x 4 f x d x = − 2 ∫ x 3 x 4 a x 4 + b x 2 + c d x
= − 2 a x 5 5 + b x 3 3 + c x x 4 x 3 = 2 a x 3 5 5 + b x 3 3 3 + c x 3 − 2 a x 4 5 5 + b x 4 3 3 + c x 4 .
S 2 = ∫ x 2 x 3 f x d x = 2 ∫ 0 x 3 f x d x = 2 ∫ 0 x 3 a x 4 + b x 2 + c d x = 2 a x 5 5 + b x 3 3 + c x x 3 0
= 2 a x 3 5 5 + 2 b x 3 3 3 + 2 c x 3 .
Suy ra
S 2 − S 1 = 2 a x 4 5 5 + 2 a x 4 3 3 + 2 c x 4 = 2 a 5 − 5 b 6 a 5 + 2 b 3 − 5 b 6 a 3 + 2 c − 5 b 6 a
= 2 a 5 . 25 b 2 36 a 2 − 5 b 6 a − 2 b 3 . 5 b 6 a − 5 b 6 a + 2 c − 5 b 6 a = − 5 b 6 a 5 b 2 18 a − 5 b 2 9 a + 2 c
= − 5 b 6 a . − 5 b 2 + 36 a c 18 a = 0
Vậy S 1 = S 2 hay S 1 S 2 = 1 .
+ Từ đồ thị của hàm số và a> 0 ta dễ dàng có được đồ thị hàm số y= f’(x) như sau:
Ta có : f’(x) = 4ax3+ 2bx
Đồ thị hàm số y= f’(x) đi qua ta tìm được a=1 và b= -2
Suy ra hàm số đã cho có dạng: f(x) =x4-2x2+d và f’(x) = 4x3-4x.
+ Do (C) tiếp xúc với trục hoành nên f’(x) = 0 khi x=0; x=1; x=- 1.
Do (C) đối xứng qua trục tung nên (C) tiếp xúc với trục hoành tại 2 điểm (1; 0) và (-1; 0).
Do đó: f(0) =1 suy ra 1= 0-2.0+ d nên d= 1
Vậy hàm số cần tìm là: y =x4-2x2+1
+ Xét phương trình hoành độ giao điểm của (C) với trục hoành:
x4-2x2+1 =0 nên x=± 1
Chọn D.