Hai người cùng làm chung trong 15 giờ thì được 1/6 công việc. Nếu để người thứ nhất làm một mình trong 12 giờ, người thứ hai làm trong 20 giờ thì cả hai làm được 1/5 công việc. Hỏi nếu để mỗi người làm riêng thì xong công việc trong bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công suất làm việc mỗi giờ của người thứ nhất, người thứ hai lần lượt là a,b (a,b>0)
Ta lập hpt:
\(\left\{{}\begin{matrix}4a+4b=1\\a+2b=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{12}\end{matrix}\right.\)
Vậy nếu làm một mình người thứ nhất cần 6 giờ để hoàn thành công việc, người thứ hai cần đến 12 giờ để hoàn thành công việc đó.
Trong 1 giờ hai người cùng làm được : 1 : 12 = \(\dfrac{1}{12}\) (cv)
Trong 4 giờ hai người cùng làm được : \(\dfrac{1}{12}\) x 4 = \(\dfrac{1}{3}\) (cv)
Trong 2 giờ người thứ hai làm được : \(\dfrac{2}{5}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{15}\) (cv)
Trong 1 giờ người thứ hai làm được : \(\dfrac{1}{15}\) : 2 = \(\dfrac{1}{30}\) (cv)
Trong 1 giờ người thứ nhất làm được : \(\dfrac{1}{12}\) - \(\dfrac{1}{30}\) = \(\dfrac{1}{20}\) (cv)
Nếu làm một mình người thứ nhất hoàn thành công việc sau:
1 : \(\dfrac{1}{20}\) = 20 ( giờ)
Nếu làm một mình thì người thứ hai hoàn thành công việc sau :
1 : \(\dfrac{1}{30}\) = 30 ( giờ)
Kết luận :..........
9h15' = 9,25h
11h18'=11,3h
Trong 1 giờ người thứ nhất làm được số phần công việc là:
\( 1:9,25=\frac{1}{9,25}\)(công việc)
Trong 1 giờ người thứ hai làm được số phần công việc là:
\(1:11,3=\frac{1}{11,3}\)(công việc)
Nếu cả hai làm chung thì trong một giờ cả hai làm được số phần công việc là:
\(\frac{1}{9,25}+\frac{1}{11,3}=\frac{822}{4181}\)(công việc)
Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )
Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)
Gọi thời gian hoàn thành công việc người thứ 1 và thứ 2 một mình lần lượt là x và y (đk: x,y>125125)
Công việc mỗi người hoàn thành trong 1h là:
- Người thứ 1:1x1x cv
- Người thứ 2:1y1y cv
Ta có:
1x+1y=5121x+1y=512 (1)
Mà y-x=2 (2)
Giải hệ phương trình (1) và (2), ta có:
x=4 ( TM )
y=6 ( TM )
Gọi thời gian hoàn thành công việc người thứ 1 và thứ 2 một mình lần lượt là x và y (đk: x,y>125125)
Công việc mỗi người hoàn thành trong 1h là:
- Người thứ 1:1x1x cv
- Người thứ 2:1y1y cv
Ta có:
1x+1y=5121x+1y=512 (1)
Mà y-x=2 (2)
Giải hệ phương trình (1) và (2), ta có:
x=4 ( TM )
y=6 ( TM )
Vậy............................
~ học tốt~
gọi thời gian người thứ nhất làm một mình hoàn thành công việc là x(giờ) x>3
vậy 1 giờ người thứ nhất làm được 1/x (công việc)
gọi thời gian người thứ hai làm một mình hoàn thành công việc là y(giờ) y>3
vậy 1 giờ người thứhai làm được 1/y (công việc)
theo bài ra hai người cùng làm trong 3 giờ hoàn thành công việc nên ta có phương trình:
\(3\left(\frac{1}{x}+\frac{1}{y}\right)=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\) (1)
Lại có người thứ nhất làm trong 20 phút (= 1/3 giờ ) và người thư hai làm trong 1 giờ thì được 1/5 công việc nên ta có phương trình
\(\frac{1}{3}.\frac{1}{x}+1.\frac{1}{y}=\frac{1}{5}\)(2)
kết hợp 1 và 2 ta có hệ phương trình
Giải hệ phương trình ta được x = 5(giời) và y = 7,5 (giờ) thỏa mãn
Vậy............
Gọi x(giờ) là thời gian người thứ nhất hoàn thành công việc khi làm một mình
y(giờ) là thời gian người thứ hai hoàn thành công việc khi làm một mình
(Điều kiện: x>15; y>15)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{15}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\)(1)
Vì nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 5 giờ thì được 25% công việc nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=\dfrac{-1}{20}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=40\\\dfrac{1}{x}=\dfrac{1}{15}-\dfrac{1}{40}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=40\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 24 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 40 giờ để hoàn thành công việc khi làm một mình
biên luân ban tu lm nhe mk chi ghi hê pt ra thôi \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{2}\end{cases}}\) ban tu giai nhe
Bài giải:
Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.
Trong 1 giờ người thứ nhất làm được công việc, người thứ hai công việc, cả hai người cùng làm chung thì được công việc.
Ta được + = .
Trong 3 giờ, người thứ nhất làm được \(\frac{4}{x}\) công việc, trong 6 giờ người thứ hai làm được \(\frac{6}{y}\)công việc, cả hai người làm được 25% công việc hay \(\frac{1}{4}\)công việc.
Ta được \(\frac{4}{x}\)+ \(\frac{6}{y}\)= \(\frac{1}{4}\)có hệ phương trình: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{4}{x}+\frac{6}{y}=\frac{1}{4}\\\end{cases}}\)
Giải ra ta được x = 24, y = 48.
Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ.
~Học tốt!~
Người thứ nhất làm hết 20 giờ
Người thứ 2 làm hết 30 giờ
Gọi thời gian người thứ nhất làm riêng xong công việc là x(giờ)
Gọi thời gian người thứ hai làm riêng xong công việc là y(giờ)
Điều kiện: x; y > 0
Trong 1 giờ người thứ nhất làm được 1/x (công việc)
Trong 1 giờ người thứ hai làm được 1/y (công việc)
Vì hai người làm chung trong 15 giờ được 1/6 công việc nên ta có phương trình:
Vì người thứ nhất làm một mình trong 12 giờ và người thứ hai làm một mình trong 20 giờ được 1/5 công việc nên ta có phương trình:
Từ (1) và (2) ta có hệ phương trình:
Vậy người thứ nhất làm riêng xong công việc trong 360 giờ; người thứ hai làm riêng xong công việc trong 120 giờ.