Tìm số tự nhiên nhỏ nhất a sao cho khi chia a cho 4,5,6 có số dư lần lượt là 3,4,5 và a chia hết cho 13.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a:4 dư 3 nên a-3⋮4=>a-3+4⋮4=>a+1⋮4(1)
Vì a:5 dư 4 nên a-4⋮5=>a-4+5⋮5=>a+1⋮5(2)
Vì a:6 dư 5 nên a-5⋮6=>a-5+6⋮6=>a+1⋮6(3)
Từ (1);(2);(3)=>a+1⋮BCNN(4;5;6)=>a+1∈BC(4;5;6)
Ta có:
4=2²
5=5
6=2.3
BCNN(4;5;6)=2².3.5=60
=>a+1∈BC(4;5;6)=B(60)={0;60;120;180;240;300;360;...}
vì a∈N* nên a+1∈N*=>a+1>0
=>a∈{59;119;179;239;299;359;...}
Vì a⋮13 mà a nhỏ nhất nên a=299
Vậy a=299
꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂
gọi số đó là a (a\(\in\)N*)
a:4 dư 3\(\Rightarrow\)a+1 \(⋮\)4
a:5 dư 4\(\Rightarrow\)a+1\(⋮\)5
a:6 dư 5\(\Rightarrow\)a+1\(⋮\)6
a nhỏ nhất
\(\Rightarrow\) a\(\in\)BC(4,5,6)
Mà : 4=2\(^2\)
5=5
6=2\(\times\)3
BCNN(4,5,6)=2\(^2\)\(\times\)5\(\times\)3=60
BC(4,5,6)={0;60;120;180;240;300;360;420;480;...}
\(\Rightarrow\) a+1\(\in\){0;60;120;180;240;300;360;420;480;...}
\(\Rightarrow\)a\(\in\){1;61;121;181;241;301;361;421;481;...}
Vì a\(\in\)N, a chia hết cho 13
\(\Rightarrow\)a=481
sai đấy bạn ạ đừng chép vào vở
Theo đề bài, ta được:
\(a=4t+3\Rightarrow a+1=4t+4⋮4\)
\(a=5k+4\Rightarrow a+1=5k+5⋮5\)
\(a=6k+5\Rightarrow a+1=6k+6⋮6\)
Từ đó: \(a+1\in BC\left(4;5;6\right)\)
\(BCNN\left(4;5;6\right)=2^2.3.5=60\)
\(\Rightarrow a+1\in B\left(60\right)=\left\{60;120;180;240;300;360;420;...\right\}\left(a+1>0\right)\)
\(\Rightarrow a\in\left\{59;119;179;239;299;359;419;...\right\}\)
Mà 200 < a < 400 nên \(a\in\left\{239;299;359\right\}\)
gọi số đó là d :
ta có d+2:6
d+2:8 suy ra d+2 thuộc BCNN(6;7;8)
d+2:7
mà d là nhỏ nhất
6=2.3
7=7 suy ra BCNN(6;7;8)=2^3.7.3=168
8=2^3
d-3 có thể là 168
vậy d=171
171:9
vậy số đó là 171]
Gọi số tự nhiên cân tìm là a (a thuộc N , a < nhất)
Ta có : a chia 6 dư 4 => a + 2 chia hết cho 6
a chia 7 dư 5 => a + 2 chia hết cho 7
a chia 8 dư 6 => a + 2 chia hết cho 8
Nên : a + 2 chia hết cho 6,7,8
=> a + 2 thuộc BCNN (6,7,8) = 168
=> a = 166
là số 39
là số 39 nha bạn