K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

a: Xet ΔAHN và ΔCHM có

AH=CH

góc HAN=góc HCM

AN=CM

=>ΔAHN=ΔCHM

b: Xet ΔAHM và ΔBHN co

AH=BH

góc HAM=góc HBN

AM=BN

=>ΔAHM=ΔBHN

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

1 tháng 8 2019

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-30^0=60^0\)

Ta có: CD là tia phân giác của \(\widehat{ACB}\)(gt)

nên \(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}=\dfrac{60^0}{2}=30^0\)

mà \(\widehat{DBC}=30^0\)(gt)

nên \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔBCD có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔBCD cân tại D(Định lí đảo của tam giác cân)

Xét ΔACD vuông tại A và ΔHCD vuông tại H có 

CD chung

\(\widehat{ACD}=\widehat{HCD}\)(CD là tia phân giác của \(\widehat{ACH}\))

Do đó: ΔACD=ΔHCD(Cạnh huyền-góc nhọn)

Suy ra: CA=CH(hai cạnh tương ứng)

Xét ΔCAH có CA=CH(cmt)

nên ΔCAH cân tại C(Định nghĩa tam giác cân)

Xét ΔCHA cân tại C có \(\widehat{ACH}=60^0\)(cmt)

nên ΔCHA đều(Dấu hiệu nhận biết tam giác đều)

b) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan\widehat{B}\)

\(\Leftrightarrow AC=5\cdot\tan30^0\)

hay \(AC=\dfrac{5\sqrt{3}}{3}cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+\left(\dfrac{5\sqrt{3}}{3}\right)^2=\dfrac{100}{3}\)

hay \(BC=\dfrac{10\sqrt{3}}{3}cm\)

Vậy: \(AC=\dfrac{5\sqrt{3}}{3}cm\)\(BC=\dfrac{10\sqrt{3}}{3}cm\)

16 tháng 2 2021

Thanks bạn nhiều!!!

Có ai biết ko chỉ mình với ạ

 

18 tháng 3 2022

Bài 1:

a, Xét tg ABD và tg EBD, có: 

góc A= góc E(90o)

BD chung

góc ABD= góc DBE(tia phân giác)

=>tg ABD= tg EBD.

b, Ta có: tg ABD= tg DBE(cm câu a)

=>AB=BE(2 cạnh tương ứng)

=>tg ABE cân tại B.

Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.

c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)

=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o

Vì tg ABE là tg đều, nên góc A=60o.

Ta có: góc A=góc BAE+ góc AEC.

=>90o=60o+ góc AEC=30o.

=> góc AEC= góc C(=30o)

=>tg AEC cân tại E.

=>AE=EC.

Mà AE=5cm(tg đều), nên EC=5cm.

Vậy, độ dài cạnh BC là: 

BE+EC=5+5=10.

=>BC= 10cm.

 

20 tháng 3 2022

làm dùm mình nha các bạn có hình của đường cao ah xong kẻ thêm những chi tiết của câu a và b nha