cho S = \(2^1+3^5+4^9+....+2014^{8049}\). Tim chu so tan cung cua S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: S=(1+3^2+3^4)+(3^6+3^8+3^10)+....+(3^2004+3^2006+3^2008)
S=91+3^6.(1+3^2+3^4)+....+3^2004.(1+3^2+3^4)=91.(1+3^6+...+3^2004) . Vì vậy S chia hết cho 91 và dư 0
b)Ta có:S=1+(3^2+3^4)+(3^6+3^8)+....+(3^2006+3^2008)=1+3^2.(1+3^2)+3^6.(1+3^2)+...+3^2006.(1+3^2)
S=1+3^2.10+3^6.10+....+3^2006.10=1+10.(3^2+3^6+...+3^2006). Vì vậy S có tận cùng là chữ số 1
Đúng rồi bạn nhé!
\(\frac{S}{2}=3^0+3^1+..+3^{2004};,,,,,3.\frac{S}{2}=3^1+3^2+..+3^{2005}\)
\(\frac{3}{2}S-\frac{S}{2}=S\) Trừ cho nhau các số ở giữ tự triệt tiêu.
\(S=3^{2005}-3^0\)
b) \(3^{2005}=3.9^{1002}=3.81^{501}=3.\left(....1\right)\) tận cùng là: 3
=> S có tận cùng là 2
Theo t/c số chính phương không có số tận cùng =2
số cp tận cùng bằng (0,1,4,5,6,9)
Ta có : S = 2.1 + 2.3 + 2.32 + ...... + 2.32004
=> S = 2.(1 + 3 + 32 + ..... + 32004)
=> 3S = 2.(3 + 32 + 33 + ..... + 32005)
=> 3S - S = 2.(32005 - 1)
=> 2S = 2.(32005 - 1)
=> S = 32005 - 1
S = 2 + 22 + 23 + ... + 2100
2S = 22 + 23 + ... + 2101
2S - S = 2101 - 2
S = 2101 - 2
Nhận thấy 101 = 4k + 1
Nên 2101 = 24k + 1 = 24k.2 = ...6k.2
Vì ...6k có tận cùng là 6 nên 2101 có tận cùng là 2
=> ...2 - 2 = 0
Nên S có tận cùng là 0
S=21+35+49+...+20148049
=2+34.3+44.44.4+....+20144.20144...20144.2014
=2+81.3+256.256.4+...+(...6)(..6)...(..6).2014
=2+..3+...4+....+..4
dãy số trên có tính chất là chữ số tận cùng của mỗi số là bằng chữ số cơ số của số đó
=>chữ số tận cùng của S là:
2+3+4+...+2014=2029104
Vậy chữ số tận cùng của S là 4
****