Gieo ngẫu nhien một con súc sắc cân đối và đồng chất hai lần.
a.Hãy mô tả không gian mẫu.
b.Xác định các biến cố sau.
A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10"
B: "Mặt 5 chấm xuất hiện ít nhất một lần".
c.Tính P(A), P(B).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép thử T được xét là "Gieo một con súc sắc cân đối và đồng chất hai lần".
a) Ω = {(i, j) i, j = 1, 2, 3, 4, 5, 6}.
Số phần tử của không gian mẫu là n(Ω) = 36.
Do tính đối xứng của con súc sắc và tính độc lập của mỗi lần gieo suy ra các kết quả có thể có của phép thử T là đồng khả năng.
b) A = {(6, 4), (4, 6), (5, 5), (6, 5), (5, 6), (6, 6)},
B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6)}.
c) P(A) = = ; P(B) = .
a: \(\Omega=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;5\right);\left(6;6\right)\right\}\)
b: A={(1;2); (2;1)}
=>P(A)=2/36=1/18
B={(4;1); (5;2); (6;3); (1;4); (2;5); (3;6)}
=>P(B)=6/36=1/6
b) Biến cố A xảy ra khi mặt có số chấm không nhỏ hơn 2 xuất hiện
Vậy A={2,3,4,5,6}. Chọn phương án là C
a. Không gian mẫu gồm 36 kết quả đồng khả năng xuất hiện, được mô tả như sau:
Ta có: Ω = {(i, j) | 1 ≤ i , j ≤ 6}, trong đó i, j lần lượt là số chấm xuất hiện trong lần gieo thứ nhất và thứ hai, n(Ω) = 36.
b. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} => n(A) = 6
B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 5)}
Đáp án A
Tổng số chấm trên mặt xuất hiện trong hai lần gieo ≥ 11 khi các kết quả là 6 ; 6 , 5 ; 6 , 6 ; 5
Gọi x là xác suất xuất hiện mặt 6 chấm suy ra x 2 là xác suất xuất hiện các mặt còn lại
Ta có 5. x 2 + x = 1 ⇒ x = 2 7 .
Do đó xác suất cần tìm là 2 7 2 + 2 7 . 1 7 + 1 7 . 2 7 = 8 49
a) Ω = {S1, S2, S3, S4, S5, N1, N2, N3, N4, N5}
b)
A = {S2, S4, S6};
B = {N1, N3, N5}.
a. Không gian mẫu gồm 36 kết quả đồng khả năng xuất hiện, được mô tả như sau:
Ta có: Ω = {(i, j) | 1 ≤ i , j ≤ 6}, trong đó i, j lần lượt là số chấm xuất hiện trong lần gieo thứ nhất và thứ hai, n(Ω) = 36.
b. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} ⇒ n(A) = 6
B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 5)}