Tìn n thuoc de cac so sau NT cung nhau
a,4n+3 và 2n+3
b,7n+13 và 2n+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)+)Gọi d là số nguyên tố và là ƯCLN(4n+3,2n+3)
=>4n+3\(⋮\)d;2n+3\(⋮\)d
+)4n+3\(⋮\)d(1)
+)2n+3\(⋮\)d
=>2.(2n+3)\(⋮\)d
=>4n+6\(⋮\)d(2)
Từ(1) và (2)
=>(4n+6)-(4n+3)\(⋮\)d
=>4n+6-4n-3\(⋮\)d
=>3\(⋮\)d
Mà d nguyên tố
=>d=3
=>4n+3\(⋮\)d
=>4n+3\(⋮\)3
=>4n+3=3k(k\(\in\)N)
=>4n =3k+3
4n =3.(k+1)
n =3.(k+1):4
Mà 3 ko chia hết cho 4
=>k+1\(⋮\)4
=>k+1=4z(z\(\in\)N)
=>n =3.4z:4
=>n =3z
=>n \(\ne\)3z thì 4n+3 và 2n+3 nguyên tố cùng nhau
b)Làm tương tự phần a nha
Chúc bn học tốt
Gọi \(ƯCLN\left(2n+3,4n+1\right)=d\)
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
\(4n + 1− (4n + 6) = −5⋮d\)
Để 2n + 3 và 4n + 1 nguyên tố cùng nhau d = 1
Với 2n + 3 không chia hết cho 5 vì 2n + 3 có tận cùng khác 0 và 5.
2n có tận cùng khác 7 và 2; n có tận cùng khác 1 và 6
Với 4n + 1 không chia hết cho 5 vì 4n + 1 có tận cùng khác 0 và 5
4n có tận cùng khác 9 và 4, n có tận cùng khác 1 và 6
Vậy n có tận cùng khác 1 và 6.
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
lớp 9 ngược à bạn
chắc vậy kẻ giấu tên