Xét tính chẵn lẻ của hàm số: y = 1 - x - 1 + x x - 1 - 1 + x
A. hàm số chẵn
B. hàm số lẻ
C. hàm số không chẵn; không lẻ
D. hàm số vừa chẵn vừa lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = f(x) = 1/x
TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D
f(-x) = 1/(-x) = -1/x = -f(x)
Vậy y = f(x) = 1/x là hàm số lẻ.
Miền xác định của hàm là miền đối xứng
\(y\left(-x\right)=cot\left(-x\right)-sin\left(-x-1\right)=-cotx+sin\left(x+1\right)\)
\(y\left(-x\right)\ne y\left(x\right)\) mà cũng khác \(-y\left(x\right)\) nên hàm không chẵn không lẻ
a, \(y=f\left(x\right)=2x^2+1\)
\(f\left(-x\right)=2x^2+1=f\left(x\right)\Rightarrow\) Là hàm chẵn
b, \(y=f\left(x\right)=5x^3-2x\)
\(f\left(-x\right)=-5x^3+2x=-f\left(x\right)\Rightarrow\) Là hàm lẻ
c, \(y=f\left(x\right)=\sqrt{x-1}\)
ĐK: \(x\ge1\)
\(-f\left(x\right)=-\sqrt{x-1}\ne f\left(x\right)\Rightarrow\) Không phải là hàm số chẵn, lẻ
d, \(y=f\left(x\right)=5x^2-\dfrac{1}{x}\)
ĐK: \(x\ne0\)
\(f\left(-x\right)=5x^2+\dfrac{1}{x}\ne f\left(x\right)\)
\(-f\left(x\right)=-5x^2+\dfrac{1}{x}\ne f\left(-x\right)\)
\(\Rightarrow\) Không phải là hàm số chẵn, lẻ
Đặt y = f(x) = x2 + x + 1.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)
Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.
Tập xác định của hàm số f(x)và g(x) đều là ℝ .
Với x ∈ ℝ thì - x ∈ ℝ và ta có: f - x = - - x = - x = f x ;
g - x = - x + 1 - - x - 1 = x - 1 - x + 1 = - g x .
Vậy f(x)là hàm số chẵn, g(x) là hàm số lẻ. Đáp án là D.
Chọn A.