Có tồn tại n để :3+6+9+........+n chia hết cho 5 không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n2+n+1=n(n+1)+2 la so chan nen ko co tan cung la5
Để có tận cùng là 0 thì n(n+1) co chu so tan cung la 8
Ma 2 so lien tiep nhan voi nhau ko bao gio co so tan cung la8
Suy ra : n(n+1)+2 ko chia het cho 8
Vậy ko tồn tại số tự nhiên N
Ta có :n2 + 2 + 2 = n . ( n+1 ) + 2
Mà n.(n + 1 ) là 2 stn liên tiếp nhân với nhau
Suy ra : n.( n + 1 ) chỉ có cs tận cùng là : 0;2;6
Do đó : n .( n +1 ) + 2 có cs tận cùng : 2;4;8 ( Không chia hết cho 5 vì không có cs tận cùng là 0;5 )
Vậy không tồn tại stn n nào để n2 + n + 2 chia hết cho 5
Ta có: n2+n+5=n.n+n+5 =n(n+1)+5
Mà n+1 và n là 2 số tự nhiên liên tiếp nên CSTC khác 3 và 8
=>n(n+1)+2 có CSTC khác 5 và 0
=>n(n+1)+2 không chia hết cho 5
Vậy không tồn tại số tự nhiên n để n2+n+2 chia hết cho 5
vô chtt mình tích cậu rùi tích mình đi
Ai tick mik mik tick lại cho