K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)

= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2

= 3x2y + xy2 - x2 - 2. Chọn C

20 tháng 5 2022

`a)`

`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`

`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`

`A=5x^4y^3-2y^4+22`

        `->` Bậc: `7`

`b)B-5y^4=A`

`=>B=A+5y^4`

`=>B=5x^4y^3-2y^4+22+5y^4`

`=>B=5x^4y^3+3y^4+22`

29 tháng 3 2020

viết bằng công thức ở chỗ \(\sum\) đi bạn

29 tháng 3 2020

Bạn bảo cái gì cơ

25 tháng 4 2017

1)Ta có: 2009 = 2010 - 1 = x - 1(do x = 2010).

Thay 2009 = x - 1 vào đa thức A(x), ta có:

A(2010)=x^2010 - (x-1).x^2009 - (x-1).x^2008 - ... - (x-1).x +1

           =x^2010 - x^2010 + x^2009 - x^2008 +x^2008 - ... - x^2 + x +1

           =x+1=2010 + 1 =2011.

Vậy giá trị của đa thức A(x) tại x =2010 là 2011

26 tháng 2 2020

bạn Nguyễn Quang Bách ơi! bạn thiếu x^2009-x^2009

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots

Câu 2: 

\(\dfrac{\left[2\left(x-y\right)^3-7\left(y-x\right)^2-\left(y-x\right)\right]}{x-y}\)

\(=\dfrac{2\left(x-y\right)^3-7\left(x-y\right)^2+\left(x-y\right)}{x-y}\)

\(=2\left(x-y\right)^2-7\left(x-y\right)+1\)

8 tháng 8 2017

bạn viết có thánh đọc ra á :v

8 tháng 8 2017

Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó

11 tháng 11 2021

\(1,=\left(x-y\right)^2:\left(x-y\right)^2=1\\ 2,P=\left(x+y+x-y\right)^2=4x^2\\ 3,=\left(x+1\right)^2=\left(-1+1\right)^2=0\\ 4,\)

Áp dụng PTG, độ dài đường chéo là \(\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

11 tháng 11 2021

Câu 1:

 \(\left(x-y\right)^2:\left(y-x\right)^2\\ =\left(x-y\right)^2:\left(x-y\right)^2\\ =1\)

Câu 2:

\(\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)

Câu 3:

\(x^2+2x+1=\left(x+1\right)^2=\left(-1+1\right)^2=0\)

Câu 4:

Gọi hcn đó là ABCD có chiều dài là AB, chiều rộng là AD

Áp dụng Pi-ta-go ta có:\(AB^2+AD^2=AC^2\Rightarrow AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)