Cho a,b,c thỏa mãn a+b+c = 0 và ab+bc+ca =0
Tính giá trị của biểu thức A=(a-1)^2+b^2+c(c+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c thỏa mãn a+b+c = 0 và ab+bc+ca =0
Tính giá trị của biểu thức A=(a-1)^2+b^2+c(c+1)
Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)
Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Không mất tính tổng quát giả sử \(a\ge b\ge c\ge d\)=>\(a^2\ge b^2\ge c^2\ge d^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)
=>\(A\le\frac{4}{d^2}\)=>\(d^2\le4\)=>\(d\in\text{ }\text{{}\pm1,\pm2\text{ }\)
Xét \(d=\pm1\)=> vô lí
Xét d=\(\pm\)2=> a=b=c=d=\(\pm\)2
=> M=ab+cd=4+4=8
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
\(A=\left(b+c\right)^2+b^2+c^2=2b^2+2c^2+2bc=2\left(b^2+bc+c^2\right)\) (tự hiểu nhé)
Mà \(a^2=2\left(a+c+1\right)\left(a+b-1\right)=2a^2+2\left(ab+bc+ca\right)+2\left(b-c\right)-2\)
\(\Leftrightarrow a^2+2a\left(b+c\right)+2bc-2=0\) (*)
\(\Leftrightarrow2bc=2-a^2-2a\left(b+c\right)=2-\left(b+c\right)^2+2\left(b+c\right)^2\) (mấy cái này là từ a + b + c =0 suy ra a = -(b+c) suy ra a2 = [-(b+c)]2 = (b+c)2 thôi!)
\(\Leftrightarrow\left(b+c\right)^2-2bc=-2\)
hay c2 + b2 = -2?? hay là mình làm sai nhì?
\(a^2=2\left(a+c+1\right)\left(a+b-1\right)\)
\(\Leftrightarrow\left(b+c\right)^2=\left(b-1\right)\left(c+1\right)\)
\(\Leftrightarrow\left(b-1\right)^2+\left(c+1\right)^2=0\)
\(\Rightarrow a=0,b=1,c=-1\)
\(\Rightarrow A=2\)
\(A=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+\left(a+b+c\right)-\dfrac{3}{2}\)
\(A=\dfrac{1}{2}\left(a+b+c+1\right)^2-2\ge-2\)
\(A_{min}=-2\) khi \(a+b+c=-1\) (có vô số bộ a;b;c thỏa mãn điều này)
Với mọi a;b;c ta luôn có:
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)
\(\Leftrightarrow12\ge2A\)
\(\Rightarrow A\le6\)
\(A_{max}=6\) khi \(a=b=c=1\)
Ta có
\(4a^2+b^2=5ab\)
\(\Leftrightarrow4a^2-4ab+b^2-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}\)
\(TH1:a=b\)
\(\Leftrightarrow\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
\(TH2:4a=b\)
\(\Leftrightarrow\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
Vậy...............
k mk nha