K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).

Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.

Chọn C. 

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

NV
21 tháng 12 2022

Ta có: \(SB=4MB=4\left(SB-SM\right)\Rightarrow\dfrac{SM}{SB}=\dfrac{3}{4}\)

Tương tự: \(\dfrac{SN}{SD}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{SN}{SD}\)

\(\Rightarrow MN||BD\) (định lý Talet đảo)

\(\Rightarrow BD||\left(MNP\right)\)

26 tháng 9 2017

Với x = S A S A = 1 ; y = S M S B , z = S N S C ; t = S P S D

ta có 1 x + 1 z = 1 y + 1 t  và xét tam giác SAC ta có

Mặt khác ba điểm A, I, N thẳng hang nên

1 4 + 1 4 z = 1 ⇔ z = 1 3

Do đó  1 y + 1 t = 1 1 + 1 1 3 = 4 ⇒ y = t 4 t - 1

Vì vậy

Dấu bằng đạt tại t = 1 2 ; y = 1 2 .  Tức mặt phẳng α đi qua trung điểm các cạnh SB. SD.

Chọn đáp án C.

22 tháng 9 2017

26 tháng 2 2017

Đáp án B

Dễ thấy M N | | A B nên mặt phẳng (CMN) cắt mặt phẳng (ABCD) theo giao tuyến là đường thẳng qua C và song song với AB.

Vậy giao tuyến của (MNC) và (ABD) là đường thẳng CD.