K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2020

gọi UWCLN(2n+3;3n+4) là d

2n +3 chia hết cho d, 3n+4 chia hết cho d

2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d

6n +9 chia hết cho d, 6n+8 chia hết cho d

6n +9- 6n+ 8 chia hết cho d

6n +9- 6n- 8 chia hết cho d

1 chia hết cho d

d=1

với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.

4 tháng 12 2020

Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?

2 tháng 12 2015

gọi d là UCLN ( 3n+5, 2n+3 )

=>3n+5 chia hết cho d

=>2n+3 chia hết cho d

=>2.(3n+5) chia hết cho d

=>3.(2n+3) chia hết cho d

=>6n+10 chia hết cho d

=>6n+9 chia hết cho d

=>6n+10-(6n+9) = d

=>6n+10-6n-9 =d

=>      1         = d

=> 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

5 tháng 11 2016

gọi ƯCLN(2n+3;3n+4) là d 

=> 2n+3 chia hết cho d ; 3n + 4 chia hết cho d

=> 2n.3+3.3 chia hết cho d; 3n.2+4.2 chia hết cho d

=> 6n+9 chia hết cho d ; 6n+8 chia hết cho d

=> 6n+9-6n+8 chia hết cho d

=> 6n+9 - 6n - 8  chia hết cho d

=> 1 chia hết cho d

=> d =1

vậy với mọi số tự nhiên n thì (2n+3) và (3n+4) là hai số nguyên tố cùng nhau

5 tháng 11 2016

bn xét từng trường hợp

n=2k(so chan)

n=2k+1(so le )

nha mình đang bận k làm đc đâu

15 tháng 12 2017

Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )

=> 2n+3 và 3n+4 đều chia hết cho d

=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d

=> 6n+9 và 6n+8 đều chia hết cho d

=> 6n+9-(6n+8) chia hết cho d        hay 1 chia hết cho d 

=> d = 1 ( vì d thuộc N sao )

=> ƯCLN của 2n+3 và 3n+4 là 1

=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

k mk nha

15 tháng 12 2017

thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<

29 tháng 12 2021

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

cre: h 

29 tháng 12 2021

Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)

Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)

Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.

29 tháng 12 2021

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau

2 tháng 12 2015

Gọi n thuộc uc(3n+5,2n+3)

Ta có

3n+5:n và 2n+3:n

=>2.(3n+5):n và 3.(2n+3)

=>6n+10:n và 6n+9:n

=>1:n 

=.n=1

Vậy 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

15 tháng 1 2023


 

Gọi n thuộc uc(3n+5,2n+3)

Ta có

3n+5:n và 2n+3:n

=>2.(3n+5):n và 3.(2n+3)

=>6n+10:n và 6n+9:n

=>1:n 

=.n=1

Vậy 3n+5 và 2n+3 là hai số nguyên tố cùng nhau