Cho n là số tự nhiên .Tìm UCLN và BCNN của n và n+2
b) Tìm các giá trị nguyên x để y nhận đc giá trị nguyên ,Biết y=5x+9/x3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
Đáp án D.
Ta có y ' = 6 x 2 + 6 1 - m x + 6 m - 2 .
Hàm số có điểm cực trị x 0 = 2 ⇒ 6 . 2 2 + 6 . 1 - m . 2 + 6 . m - 2 = 0 ⇔ m = 4 .
Với m = 4 hàm số có thêm một điểm cực trị x 1 = m - 2 2 = 1 .
Hàm số đã cho trở thành y = 2 x 3 - 9 x 2 + 12 x + n .
Hàm số này có hai cực trị là y 0 = y 2 = n + 4 và y 1 = y 1 = n + 5 .
Hàm số có hai cực trị đều dương ⇔ n + 4 > 0 n + 5 > 0 ⇔ n > - 4
Vậy giá trị nguyên nhỏ nhất của n là ‒3. Do đó giá trị nhỏ nhất của m + n (với m , n nguyên) là 4 + - 3 = 1 . Chọn đáp án D.
Khó vãi lìn.Ai mà giải được,toán lớp 6cow màaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa