Cho tam giác ABC nhọn,đường tròn tâm O,đường kính BC cắt 2 cạnh AB,AC lần lượt tại M và N.Gọi H là giao điểm của BN và CM
a)Chứng minh AH vuông góc với BC
b) Chứng minh MN<BC
c)Gọi I là trung điểm MN.Chứng minh OI vuông góc với MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu bạn làm được thì bạn hãy làm đi , tra mạng , và tham khảo ít thôi nhé
Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đo: ΔBNC vuông tại N
Xet ΔABC có
BN,CM là các đường cao
BN cắt CM tại H
Do đó; H là trực tâm
=>AH vuông góc với BC
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: AH vuông góc với BC tại D
b:
Xét tứ giác CDFA có góc CDA=góc CFA=90 độ
nên CDFA là tứ giác nội tiếp
=>góc BFD=góc BCA
Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
=>góc AFE=góc ACB
Ta có: góc COE=180 độ-2 góc C
góc EFD=180 độ-góc AFE-góc BFD
=180 độ-2 góc C
=>góc COE=góc EFD
=>DOEF là tứ giác nội tiếp
a: Xét (O) có
ΔMBC nội tiếp
BC là đường kính
Do đó: ΔMBC vuông tại M
Xét (O) có
ΔNBC nội tiếp
BC là đường kính
Do đó:ΔNBC vuông tại N
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH⊥BC tại K
b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có
\(\widehat{MAC}\) chung
Do đó: ΔANB∼ΔAMC
Suy ra: AN/AM=AB/AC
hay \(AN\cdot AC=AB\cdot AM\)
a) Chứng minh AI BC
Ta có ∠BEC = BDC = 90 0 (hai góc nội tiếp chắn nửa đườn tròn)
a: Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét ΔBAC có
BN là đường cao ứng với cạnh huyền AC
CM là đường cao ứng với cạnh huyền AB
BN cắt CM tại H
Do đó: AH⊥BC
a: Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH\(\perp\)BC