K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A = 11^9 + 11^8 + ... + 11 + 1

=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11

11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)

10A = 11^10 - 1

A = (11^10 - 1 ) : 10

vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .

. Vậy A chia hết cho 5

hok tốt

5 tháng 8 2021

undefined

nhé bạn

20 tháng 9 2017

bài 4

Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.

Từ 0 đến 999 có 100 chục nên có :  

4.100 = 400 (số).

Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5

bài 5

Gọi thương của số tự nhiên x tuần tự là a và b 

Theo đề, ta có: 

x = 4a + 1 

x = 25b + 3 

<=> 4a + 1 = 25b + 3 

4a = 25b + 2 

a = (25b + 2)/4 

b = 2 ; a = 13 <=> x = 53 

b = 6 ; a = 38 <=> x = 153 

b = 10 ; a = 63 <=> x = 253 

b = 14 ; a = 88 <=> x = 353 

b = 18 ; a = 113 <=> x = 453 


Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.

 
20 tháng 9 2017

MÌNH THẤY NGÀY 20/9/2017 NÊN CHẮC LÀ BẠN ĐÃ CÓ CÂU TRẢ LỜI

22 tháng 10 2021

Bài 5: 

Ta có: \(3n+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

22 tháng 10 2021

cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.

 

14 tháng 11 2016

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

14 tháng 11 2016

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11

16 tháng 11 2018

nhanh lên mk đang gấp

\(1\)

\(A=11^9+11^8+11^7+...+11+1\)

\(\Rightarrow A=11^9+11^8+11^7+...+11^1+11^0\)

\(\Rightarrow A=\left(...1\right)+\left(...1\right)+\left(...1\right)+...+\left(...1\right)+1\)

\(\Rightarrow A=\left(.....0\right)⋮5\)

\(\text{Vậy }A⋮5\)

\(2\)

\(n^2+n+1=n.n+n.1+1=n\left(n+1\right)+1\)

\(\text{Mà n ( n + 1 ) là hai số liên tiếp nên chúng là số chãn}\)

\(\Rightarrow n\left(n+1\right)+1\text{là số lẻ}\)

\(\Rightarrow\left(n^2+n+1\right)⋮4̸\)