K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

a) Xét ΔCC'A' có

M' là trung điểm của A'C'(B'M' là trung tuyến của ΔA'B'C')

B là trung điểm của C'C(C' và C đối xứng nhau qua B)

Do đó: M'B là đường trung bình của ΔCC'A'(Định nghĩa đường trung bình của tam giác)

⇒M'B//CA' và \(M'B=\frac{CA'}{2}\)(Định lí 2 về đường trung bình của tam giác)

⇒M'B//AM và \(M'B=\frac{AC}{2}\)(Vì CA'=AC)

⇒M'B//AM và M'B=AM(BM là đường trung tuyến ứng với cạnh AC trong ΔABC)

Xét tứ giác ABM'M có M'B//AM(cmt) và M'B=AM(cmt)

nên ABM'M là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

b) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Xét ΔHAC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔHAC\(\sim\)ΔABC(g-g)

d) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 
10 tháng 7 2021

mk cần phần C và D bn có thể diễn giải chi tiết được không

 

ai đó giúp me vs

 

25 tháng 7 2019

+ Vì O là giao điểm của ba đường phân giác trong tam giác ABC nên O là tâm của đường tròn nội tiếp tam giác ABC nên đáp án A sai.

+ Tam giác ABC vuông tại A có F là trung điểm của BC nên AF là đường trung tuyến ứng với cạnh huyền 

Do đó: AF =  1 2 BC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Suy ra AF = FC = FB 

Nên F cách đều ba đỉnh A, B, C 

Do đó F là tâm đường tròn ngoại tiếp tam giác ABC.

+ Vì D  ≠ E  ≠ F và chỉ có một đường tròn ngoại tiếp tam giác ABC nên đáp án B, C sai và D đúng.

Chọn đáp án D

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc CB

27 tháng 4 2023

Mọi ngưòu giải hộ tui với ạ mai tui thi rồi

 

a) Có A là hình chiếu của C trên đoạn A

       CB là dường xiên của đoạn AB

Suy ra CB lớn hơn AC

Xét Tam giác ABC có

AB nhỏ hơn AC nhỏ hơn CB

Suy ra góc C nhỏ hơn góc B nhỏ hơn góc A (quan hệ giữa góc và cạnh đới diện)

b)CÓ BI là p/g (gt)

Suuy ra góc DBI = góc ABI

Xét tam giác AIB và tam giác DIB có

IB chung

góc DBI = góc ABI (cmt)

AB = BD (gt)

Suy ra tam giác BAI = tam giác BDI (cgc)

Suy ra góc BAI = góc IDB (2 góc tương ứng)

mà góc BAI =  90 độ (tam giác ABC vuông tại A)

Suy ra góc IDB = 90 độ

Suy ra ID vuông góc với BC (định nghĩa)

Đợi mình nghĩ ra câu C

 

18 tháng 1 2023

1 2 1 1 2 1 2 A M N B C

a,Xét tam giác ABN và tam giác ACM có :

AM=AN (gt)

Góc A chung 

AB=AC(gt)

=> tam giác ABN = tam giác ACM (c-g-c)

b,theo câu a =>AMC^=ANB^(1)

Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)

Từ 1 và 2 =>MNI^=NMI^(3)

Vì B1^=C1^

B^=C^

=>B^-B1^=C-C1^

=>C2^=B2^(4)

Mặt khác : I1^=I2^(đối đỉnh) (5)

Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )

=> MNI^+NMI^ / 2 = B2^+C2^ / 2

=> B2^=MNI^

Vì 2 góc này ở vị trí sole trong  và bằng nhau 

=> MN // BC

28 tháng 7 2017

xin lỗi mọi người là tính tứ giác aced chứ ko phải acbed

             Giải:

a) Diện tích tam giác ABC = 1/2 x AH x BC

    Diện tích tam giác ABE = 1/2 x AH x BE

                                          = 1/2 x AH x 2/3 BC

                                          = 1/2 x AH x BC x 2/3

                                          = Diện tích tam giác ABC x 2/3

Vậy: Diện tích tam giác ABE = 2/3 diện tích tam giác ABC.

b) Vì chiều cao DE có D là trung điểm nên Diện tích tam giác ABE = 2 lần diện tích tam giác BDE

                                                                                                           = 12 x 2

                                                                                                           = 24

                                                                      Diện tích tam giác ABC = 24 : 2/3

                                                                                                            = 36

c) Diện tích hình tứ giác ADEC là:        36 - 24 = 12 ( cm vuông)

                   Đáp số:  ...........................