1. Tìm biểu thức A, biết A=\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}(a,b,c\ne0)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))
=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b+d}+1=\frac{b}{c+d+a}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(=\frac{a}{a+b+c+d}=\frac{b}{a+b+c+d}=\frac{c}{a+b+c+d}=\frac{d}{a+b+c+d}\)
\(\Rightarrow a=b=c=d\) Thay vào A ta được :
\(A=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Áp dụng BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}\)
\(+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có :
\(P\)\(\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT : \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có :
\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu gọn lại ta có :
\(P\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có
\(P\le\) \(\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
\(M=1+1+1+1=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy .......
Haiz, sao lại thiếu sự quan sát thế nhỉ?
TH1: \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)\(\Rightarrow A=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1\)
TH2: \(a+b+c\ne0\)\(\Rightarrow A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)