K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

Helpp 

29 tháng 10 2021

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5bk+2b}{5bk-2b}=\dfrac{5k+2}{5k-2}\)

\(\dfrac{5c+2d}{5c-2d}=\dfrac{5dk+2d}{5dk-2d}=\dfrac{5k+2}{5k-2}\)

Do đó: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5c+2d}{5c-2d}\)

30 tháng 11 2017

từ \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=k=>\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

ta có:\(\dfrac{5a+3b}{7a-2b}=\dfrac{5.ck+3.dk}{7.ck-2.dk}=\dfrac{k.\left(5c+3d\right)}{k.\left(7c-2d\right)}=\dfrac{5c+3d}{7c-2d}\)Vậy \(\dfrac{5a+3b}{7a-2b}=\dfrac{5c+3d}{7c-2d}\left(đpcm\right)\)

b) từ \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=k=>\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

ta có:\(\dfrac{7a^2+3ab}{11a^2+8.b^2}=\dfrac{7.c^2.k^2+3.c.d.k^2}{11.c^2.k^2+8.d^2.k^2}=\dfrac{k^2.\left(7.c^2+3.c.d\right)}{k^{2.}\left(11.c^2+8.d^2\right)}\) vậy .......

c)\(từ\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

=>\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\dfrac{a+b}{c+d}\right)^2\)(1)

Mặt khác:\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1).(2)=>......

1 tháng 10 2017

Nhấn vào đây

12 tháng 11 2018

a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)

b;c;d tương tự hết

19 tháng 11 2022

b: a/b=c/d

nên 3a/3b=2c/2d

=>a/b=c/d=(3a+2c)/(3b+2d)

c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)

d: a/c=b/d

nên 5a/5c=2b/2d

=>a/c=b/d=(5a-2b)/(5c-2d)

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)