Cho tam giác ABC, gọi H là trực tâm. Gọi H' đối xứng vơi H qua BC. Gọi I là trung điểm của BC, trên tia đối của tia IH lấy K sao cho IH=IK. a) Cm tam giác BHC= tam giác BH'C b) cm tứ giác BH'KC là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hỉnh nha
tg abe đều suy ra ae=eb=ab và bea=eba=eab=60 độ
tg acf đeu suy raac=cf=af và afc=fca=fac=60 độ
gọi gọi EN,AG,BM là đường cao của tg EBA VÀ CÁC ĐƯỜNG CAO CẮT NHAU TẠI TRỰC TÂM H
CMĐ TG ENB=ENA (CH GN) SUY RA NB=NA(2 CẠNG TƯƠNG ỨNG )
CMĐ TG HNB=HNA(C GC) SUY RA HB=HA(2 CẠNH TƯƠNG ỨNG ) (1)
CMĐ TG HIB=KIC (C G C) SUY RA HB=CK (2 CẠNH TƯƠNG ỨNG) VÀ GÓC HBI=KCI(2)
TỪ (1) VÀ (2) SUY RA HA=CK
CMĐ GÓC EBH=ABH=30 ĐỘ HAN
TA CÓ KCF+ACF+ACB+ICK=360
KCF =360-ACF-ACB-ICK =360-60-ACB-HBI=300-ACB-IBH(3)
TA CÓ GÓC HAF =HAB+BAC+CAF=30+BAC+60=90+BAC = 90+(180-ABC-ACB)=270-ABC-ACB=270-(IBH-30)-ACB =270-IBH+30-ACB=300-ACB-IBH(4)
TỪ (3) VÀ (4) TA SUY RA DC GÓC HAF=KCF
CMĐ TG HAF=KCF(C G C)
CHỖ NÀO BN KO HIỂU Ở BÀI MÌNH TRÌNH BÀY BN CÓ THỂ HỎI MÌNH .TAB CHO MÌNH NẾU ĐÚNG NHA
chỗ cậu chứng minh các tam giác bằng nhau thì hơi dài.Cậu nên áp dụng t/c tam giác đều:
Có H là trực tâm của tam giác ABE
Mà tam giác ABE đều => H cũng là trọng tâm
=> BN=NA ( t/c đường trung tuyến )
MÀ EN vuông góc với AB ( Cách vẽ),BN=NA (cnt)=>N thuộc đường trung trực AB=>AH=BH ( t/c)
a: Gọi G là trọng tâm, M là trung điểm của BC
=>AG=2/3AM
BM+BE=EM
CM+CF=MF
mà BM=CM; BE=CF
nên EM=MF
=>M là trung điểm củaEF
Xet ΔAEF có
AM là trung tuyến
AG=2/3AM
=>G là trọng tâm của ΔAEF
b: G là trọng tâm cùa ΔAEF
=>N là trung điểm của AF
Xét ΔAEF có FM/FE=FN/FA
nên MN//AE và MN=1/2AE
Xét ΔGAE có GH/GA=GI/GE
nên HI//AE và HI=1/2AE
=>MN//HI và MN=HI
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
a: Xét tứ giác ABDC có
O là trung điểm chung của AD và BC
góc BAC=90 độ
Do đó: ABDC là hình chữ nhật
b: Xét ΔAED có HA/AE=AK/AD
nen HK//ED
=>ED vuông góc với AE
=>ΔAED vuông tại E
Xét ΔCAB và ΔCEB có
BA=BE
CB chung
AC=EC
Do đó: ΔCAB=ΔCEB
=>góc CEB=90 độ
=>ΔBEC vuông tại E
a) Vì H' đối xứng với H qua BC nên BC là đường trung trực của HH' => BH = BH', CH = CH'
Xét ∆BHC và ∆BH'C có:
BH = BH' (cmt)
BC: cạnh chung
HC = H'C (cmt)
Do đó ∆BHC = ∆BH'C (c.c.c)
b) Gọi T là giao điểm của HH' với BC
∆HH'K có T là trung điểm của HH' (gt) và HI = IK (gt) nên TI là đường trung bình của tam giác => HI // H'K hay BC // H'K
Dễ chứng minh: ∆HIB = ∆KIC (c.g.c) => ^HBI = ^KCI (hai góc tương ứng)
Mà ^HBI = ^H'BC (∆BHC = ∆BH'C) nên ^H'BC = ^KCI
Hình thang BH'KC có ^H'BC = ^KCI nên là hình thang cân (đpcm)