1) 2x^3 - 8x = 0 2)2x (x - 15) - 4 (x - 15) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
\(2x-8x^2=0\Rightarrow2x\left(1-4x\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\1-4x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
\(x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Cn lại lm tương tự nha e!
=.= hok tốt!!
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
a) \(3\left(x-1\right)+2x-2x^2=0\)
\(\Leftrightarrow3x-3+2x-2x^2=0\)
\(\Leftrightarrow-2x^2+5x-3=0\)
\(\Leftrightarrow-2x^2+2x+3x-3=0\)
\(\Leftrightarrow-2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-2x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy..
b) \(x^2+8x+15=0\)
\(\Leftrightarrow x^2+3x+5x+15=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
Vậy..
Tìm x :
a) 3(x - 1 ) + 2x - 2x2 = 0
\(\Leftrightarrow3\left(x-1\right)-2x^2+2x=0\)
\(\Leftrightarrow\) 3\(\left(x-1\right)-2x\left(x-1\right)=0\)
\(\Leftrightarrow\) (x - 1 )( 3-2x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-2x=-3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy....
b) x2 + 8x + 15 = 0
\(\Leftrightarrow x^2+3x+5x+15=0\)
\(\Leftrightarrow\) (x2 + 3x ) + ( 5x + 15 ) =0
\(\Leftrightarrow x\left(x+3\right)+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
Vậy....
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
1) \(2x^3-8x=0\)
\(\Leftrightarrow2x\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy \(x\in\left\{0;\pm2\right\}\)
2) \(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
Vậy \(x\in\left\{2;15\right\}\)
1
\(2x^3-8x=0\)
\(2x\left(x^2-4\right)=0\)
\(\orbr{\begin{cases}2x=0\\x^2-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
2
\(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\left(2x-4\right)\left(x-15\right)=0\)
\(\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\)
\(\orbr{\begin{cases}2x=4\\x=0+15\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=15\end{cases}}\)