Câu hỏi : Cho tam giác ABC có H là trực tâm , M là trung điểm của BC.Qua H kẻ đường thẳng uông góc với HM cắt AB và AC tại E và F , trên tia đối của tia HC lấy HD=HC.Chứng minh rằng :
a) DE vuông góc với BH
b) EH=HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}DH=HC\\BM=MC\end{matrix}\right.\Rightarrow HM\) là đtb tam giác BDC
\(\Rightarrow HM//BD\)
\(b,HM//BD\left(cm.trên\right)\\ \Rightarrow BD\perp HE\left(1\right)\left(HM\perp HE\right)\)
Lại có H là trực tâm nên CH là đường cao tam giác ABC
\(\Rightarrow CH\perp AB\Rightarrow HD\perp BE\left(2\right)\)
Mà \(DE\cap BE=E\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow E\) là trực tâm tam giác HBD
\(c,\) H là trực tâm nên BH là đường cao
\(\Rightarrow BH\perp AC\left(4\right)\)
Mà E là trực tâm nên DE là đường cao
\(\Rightarrow DE\perp BH\left(5\right)\\ \left(4\right)\left(5\right)\Rightarrow DE//AC\)
\(d,\left\{{}\begin{matrix}DH=HC\\\widehat{DHE}=\widehat{CHF}\left(đối.đỉnh\right)\\\widehat{DEH}=\widehat{HFC}\left(so.le.trong\right)\end{matrix}\right.\Rightarrow\Delta DHE=\Delta CHF\left(g.c.g\right)\\ \Rightarrow EH=HF\)
1: Xét ΔDCB có
M là trung điểm của BC
H là trung điểm của CD
Do đó: HM là đường trung bình của ΔDCB
Suy ra: HM//DB
1) Xét tam giác DBC có:
H là trung điểm của DC ( HD=HC )
M là trung điểm của BC ( gt )
=> HM là đường trung bình của tam giác DBC
=> HM//BD
2) Xét tam giác ABC có:
EF⊥HM(gt)
Mà HM//BD(cmt)
=> EF⊥BD
=> HE⊥BD
Ta có: BA⊥CA ( H là trực tâm tam giác ABC)
Mà \(E\in AB,D\in HC\)
=> BE⊥HD
Xét tam giác HBD có
BE⊥HD (cmt)
HE⊥BD (cmt)
Mà HE cắt BE tại E
=> E là trực tâm tam giác HBD
a) Xét tam giác DBC có:
M là trung điểm BC (gt)
H là trung điểm DC(HD=HC)
=>MH là đường trung bình
=> MH//BD
b) Ta có: MH//BD(cmt)
Mà MH⊥EH
=> BD⊥EH
Xét tam giác DHB có:
EH là đường cao(BD⊥EH)
BA là đường cao( do CH⊥AB,D∈CH)
Mà EH cắt BA tại E
=> E là trực tâm tam giác DHB
c) Xét tam giác DHB có:
E là trực tâm
=> DE là đường cao => DE⊥BH
Mà AC⊥BH(BH là đường cao tam giác ABC)
=> DE//AC
d) Sửa đề: CM: HE=HF
Xét tam giác DEH và tam giác CFH có:
\(\widehat{EHD}=\widehat{CHF}\)(đối đỉnh)
DH=HC(gt)
\(\widehat{EDH}=\widehat{HCF}\)(2 góc so le trong do DE//AC)
=> ΔDEH=ΔCFH(g.c.g)
=> HE=HF
Qua H kẻ đường thẳng vuông góc với HM
bn vẽ hình nha , mình ko hiểu đề bài làm
3 cách giải
) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường
=> M cũng là trung điểm của HD
mà O là trung điểm của AD
=> OM là đường trung bình tam giác ADH
=> OM = 1/2AH (dpcm)
3) và OM//AH
mà AH vuông góc BC
=> OM vuông góc với BC
gọi I là giao điểm của AM và OH
do AH//OM (cùng vuông góc BC)
=> tam giác IAH đồng dạng IMO
=> IA/IM = AH/OM = 2OM/OM = 2
=> điểm I thuộc trung tuyến AM và cách A một khoảng như trọng tâm G
=> I trùng G
vậy H,G,O thẳng hàng
cách 2
1)
H là trực tâm của tam giác ABC => BH vuông góc với AC
Mà DC lạ vuông góc với AC(gt)
=> BH song song DC (1)
H là trực tâm của tam giác ABC => CH vuông góc với AB
Mà DB lạ vuông góc với AB(gt)
=> CH song song DB (2)
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD
=> BHCD là hình bình hành.
{ Xin lỗi bạn nha ! mình chỉ làm đến đây được thôi, lần sau có j mình giải cho nha! cho hỏi bạn học lớp mấy? }
bài làm
a million. BH vuông góc AC và CD vuông góc AC => BH//CD CH vuông góc AB và BD vuông góc AB => CH//BD => BHCD là hbh 2. BD vuông góc AB; CD vuông góc AC; => T? giác ABDC n?i ti?p ???ng tròn ???ng kính advert, tâm O => OB = OC => tam giác BOC cân t?i O => OM vuông góc BC Kéo dài BO c?t (O) t?i E => BC vuông góc CE ( vì BE là ???ng kính) => OM//CE => CE/OM = BC/BM = 2 => 2OM = CE (a million) M?t khác t??ng t? câu a million) d? C/M AECH là hbh => AH = CE (2) (a million) và (2) => 2OM = AH (3) 3. Ta có AH//OM ( vì cùng vuông góc BC) => ^HAM = ^OMA (4) ( so le trong) G là tr?ng tâm tg ABC => G thu?c AM và GA/GM = 2 (5) M?t khác t? (3) => AH/OM = 2 (6) (4);(5);(6) => tg AHG ??ng d?ng tg OMG => ^AGH = ^OGM => H, G,O th?ng hàng
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
nhớ k nha
a,{DH=HCBM=MC⇒HMa,{DH=HCBM=MC⇒HM là đtb tam giác BDC
⇒HM//BD⇒HM//BD
b,HM//BD(cm.trên)⇒BD⊥HE(1)(HM⊥HE)b,HM//BD(cm.trên)⇒BD⊥HE(1)(HM⊥HE)
Lại có H là trực tâm nên CH là đường cao tam giác ABC
⇒CH⊥AB⇒HD⊥BE(2)⇒CH⊥AB⇒HD⊥BE(2)
Mà DE∩BE=E(3)DE∩BE=E(3)
(1)(2)(3)⇒E(1)(2)(3)⇒E là trực tâm tam giác HBD
c,c, H là trực tâm nên BH là đường cao
⇒BH⊥AC(4)⇒BH⊥AC(4)
Mà E là trực tâm nên DE là đường cao
⇒DE⊥BH(5)(4)(5)⇒DE//AC⇒DE⊥BH(5)(4)(5)⇒DE//AC
∆ABC có hai đường cao BD, CR cắt nhau tại H
a) ∆BDC có H là trung điểm của DC (gt) và M là trung điểm của BC => HM là đường trung bình của tam giác => HM // BD
Mà HM⊥EF nên BD⊥EF. ∆BDH có BE và HE là hai đường cao nên E là trực tâm của ∆BDH => DE⊥BH (đpcm)
b) Kẻ FJ⊥CH cắt BH tại S
∆SHC có hai đường cao CF và SJ nên HF là đường cao thứ ba => HF⊥SC
Mà HF⊥HM => HM // SC mà M là trung điểm của BC nên H là trung điểm của BS
Xét ∆BRH và ∆SJH có:
^BRH = ^SJH (= 900)
BH = SH (cmt)
^BHR = ^SHJ (đối đỉnh)
Do đó ∆BRH = ∆SJH (ch - gn)
=> HR = HJ (hai cạnh tương ứng)
Xét ∆ERH và ∆FJH có:
^ERH = ^FJH (= 900 )
HR = HJ (cmt)
^EHR = ^FHJ (đối đỉnh)
Do đó ∆ERH = ∆FJH (cgv - gnk)
=> EH = FH (hai cạnh tương ứng) (đpcm)