Mọi người giúp em giải bài này ạ, em cảm ơn
Bài 1: Rút gọn biểu thức:
A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)
B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)
C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)
D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)
E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)
\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)
\(G=\frac{1+cos2a-cosa}{2sina-sina}\)
H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)
Bài 2: chứng minh
a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)
b) chứng minh biểu thức sau độc lập với biến x:
A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)
c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)
e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)
f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)
g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)
k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)
Bài 3: giải bất phương trình:
a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)
b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)
c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)
d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)
e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)
f)\(\frac{2x+1}{-x^2+x+6}\ge0\)
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
mọi người giúp hộ mình nhanh với