\(x^2-7x+2\left(x+2\right).\sqrt{x+3}=24\)
Giải PT vô tỷ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)
Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)
PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)
+ Với a=1
\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)
+ Với b=1
\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)
Thì được:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)
Làm tiếp
xin lỗi nhé,tại máy mình bị lỗi nên phải đánh tách ra :
\(\Leftrightarrow\left(\sqrt{x^2+x+2}-\sqrt{2x+3}\right)^2+2x+3=0\)
Do \(\left(\sqrt{x^2+x+2}-\sqrt{2x+3}\right)\ge0\)nên \(2x+3\le0\)hay \(x\le\frac{-3}{2}\)
Mà Đk là \(x\ge\frac{-3}{2}\)
\(\Rightarrow x=\frac{-3}{2}\)
Thay lại thì \(x=\frac{-3}{2}\left(L\right)\)
\(\Rightarrow\)pt vô nghiệm
Bài 2 phân tích cái trong căn. tách vế trái thành nt trong căn
\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)
\(\Rightarrow x\le1-\sqrt{3}\)
Ta có:
\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))
\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)
(Kết hợp với điều kiện ta suy ra)
\(\Leftrightarrow x=-1\)
ĐKXĐ: bla bla bla
\(3x\left(x-2\right)\sqrt{3x-1}=2\left(x^3-5x^2+7x-2\right)\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{3x-1}=2\left(x-2\right)\left(x^2-3x+1\right)\)
TH1: \(x=2\)
TH2: \(3x\sqrt{3x-1}=2\left(x^2-3x+1\right)\)
Đặt \(\sqrt{3x-1}=t\ge0\)
\(\Rightarrow3tx=2\left(x^2-t^2\right)\)
\(\Leftrightarrow2x^2-3tx-2t^2=0\)
\(\Leftrightarrow\left(2x+t\right)\left(x-2t\right)=0\)
\(\Rightarrow x=2t\)
\(\Leftrightarrow x=2\sqrt{3x-1}\)
\(\Leftrightarrow x^2=4\left(3x-1\right)\)
\(\Leftrightarrow x^2-12x+4=0\)
Đk x>= -2
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\Rightarrow\sqrt{x^2+7x+10}=a+b;a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
<=> \(\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
<=> \(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\)
<=> \(\left(a-b\right)\left(ab+1-a-b\right)=0\)
<=> \(\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
=> a = b hoặc b = 1 hoặc a = 1
(+) a = b => x + 5 = x +2 => 0x = -3 (loại )
(+) a = 1 => x + 5 = 1 => x = -4 (loại )
(+) b = 1 => x + 2 = 1=> x = -1 ( TM)
Vậy x = -1 là nghiệm của pt
Câu hỏi của Nguyễn Phương Nga - Toán lớp 9 - Học toán với OnlineMath
tham khảo