K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Có AD \(\perp\)BC nên ta có \(\widehat{ACD}=90-\widehat{DAC}\)

cmtt có \(\widehat{AHE}=90-\widehat{DAC}\)

\(\Rightarrow\widehat{ACD}=\widehat{AHE}\)

mà \(\widehat{AFE}=\widehat{AHE}\)

\(\Rightarrow\widehat{AFE}=\widehat{ACD}\)

Xét \(\Delta\) AFE và \(\Delta\) ABC có 

\(\widehat{AFE}=\widehat{ACD}\left(cmt\right)\)

\(\widehat{BAC}chung\)

\(\Rightarrow\Delta AFE\infty\Delta ABC\left(g-g\right)\)

#cỪu

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co

góc A chung

=>ΔAEB đồng dạng với ΔAFC

b: ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

9 tháng 4 2023

giúp em với ạ:(

a: Kẻ AN là đường kính của (O)

góc ABN=1/2*180=90 độ

=>BN//CH

góc ACN=1/2*180=90 độ

=>CH//BN

=>BHCN là hình bình hành

=>M là trung điểm của HN

Xét ΔAHN có NM/NH=NO/NA

nên OM//AH và OM=AH/2

=>AH=2OM

c: ΔOKL cân tại O

mà OI là đường cao

nên I là trung điểm của KL

20 tháng 12 2017

A B C O F H E D I K A' C' B' M N

a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)

KB // CF \(\Rightarrow\widehat{ABK}=90^o\)

Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).

b) Do BHCK là hình bình hành nên I là trung điểm HK.

AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K

Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'

Tương tự : HF = FC' ; HE = EB'

Ta có :  \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)

\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)

\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)

\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)

Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)

c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)

Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\)  (1)

AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.

Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)

Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)

Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\)   (2)

Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)

20 tháng 12 2017

ghê quá cô ơi

7 tháng 1 2020

Hình hơi rối, bạn tự vẽ hình nhé!

Lấy điểm S đối xứng với H qua BC, R là giao điểm của KC và MB.

Vì \(ME=MA=MH\)( tính chất trung tuyến )

Kết hợp tính đối xứng của điểm S ta có: 

\(\widehat{MSB}=\widehat{BHD}=\widehat{MHE}=\widehat{MEB}\)

=> Tứ giác MESB nội tiếp

\(\Rightarrow\widehat{RBE}=\widehat{MSE}\left(1\right)\)

Lại có: \(\widehat{KSC}=\widehat{CHD}=\widehat{AHF}=\widehat{AEK}\)

Nên tứ giác KSCE cũng nội tiếp

=> \(\widehat{MSE}=\widehat{RCE}\left(2\right)\)

Từ ( 1 ) và ( 2 ) =>\(\widehat{RBE}=\widehat{RCE}\) 

Nên tứ giác RBCE nội tiếp

=> \(\widehat{BRC}=\widehat{BEC}=90^o\)

Trong \(\Delta MBC\)có: \(MK\perp BC\)và \(CK\perp MB\)

Nên K là trực tâm của \(\Delta BMC\)