K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Có 5 số lẻ là : 1 , 3 , 5 , 7 , 9

Có 5 cách chọn chữ số hàng trăm

Có 4 cách chọn chữ số hàng chục

Có 3 cách chọn chữ số hàng đơn vị

Có thể lập được các số có ba chữ số khác nhau từ các chữ số lẻ là :

      5 x 4 x 3 = 60 ( số )

8 tháng 6 2021

1234    2134      3124     4123           Có 4 hàng ngang và 6 hàng dọc

1243    2143      3142      4231         =>Số các số khác nhau đc lập nên từ những số trên la:

1324    2314      3214       4132              4x6=24(số hạng)

1342    2341      3241      4213                Vậy có 24 số hạng

1423    2431      3421      4312

1432    2413      3412       4321

a: \(\overline{abc}\)

a có 5 cách

b có 5 cách

c có 4 cách

=>Có 5*5*4=100 cách

b: \(\overline{abc}\)

a có 2 cách

b có 2 cách

c có 1 cách

=>Có 2*2*1=4 cách

c: \(\overline{abc}\)

a có 3 cách

b có 2 cách

c có 1 cách

=>Có 3*2*1=6 cách

13 tháng 8 2019

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là

(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là  {b,c}).

Suy ra, số các số tự nhiên thỏa đề ra là 

23 tháng 8 2021

a, Có \(5!=120\) số tự nhiên thỏa mãn yêu cầu bài toán.

b, Số có dạng \(\overline{abcde}\).

e có 3 cách chọn.

a có 4 cách chọn.

b có 3 cách chọn.

c có 2 cách chọn.

d có 1 cách chọn.

\(\Rightarrow\) Có \(3.4.3.2.1=72\) số tự nhiên thỏa mãn yêu cầu bài toán.

30 tháng 8 2017

Đáp án C

Gọi số cần tìm có dạng  

TH1: 2 số lẻ liên tiếp ở vị trí ab

a có 3 cách chọn

b có 2 cách chọn

c có 4 cách chọn

d có 3 cách chọn

e có 2 cách chọn

TH2:2 số lẻ liên tiếp ở vị trí bc

a có 3 cách chọn

b có 3 cách chọn

c có 2 cách chọn

d có 3 cách chọn

e có 2 cách chọn

TH3: 2 số lẻ liên tiếp ở vị trí cd (tượng tự TH2)

Vậy số cách chọn thỏa mãn yêu cầu đề bài là:

3.2.4.3.2+2.(3.3.2.3.2)=360

29 tháng 6 2017

Chọn D

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 

a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là 

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})

Suy ra, số các số tự nhiên thỏa đề ra là 

22 tháng 7 2019

Chọn C

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   a b c d e ¯  (a có thể bằng 0), có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là  

(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {a,c,e}).

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  0 b c d e ¯ , có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là 

(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {0,c,e}).

Suy ra, số các số tự nhiên thỏa đề ra là