tìm x biết ( 3/2 - 5/11 - 3/13 ) (2x - 2) = ( -3/4 + 5/22 +3/26)
giải giúp mik vs ạ
mik đang cần gấp cảm ơn trc ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b, \(\left(2x-4\right)\left(9-3x\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-4>0\\9-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}\Leftrightarrow2< x< 3}}\)
a. \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b. \(\left(2x-4\right)\left(9-3x\right)>0\Leftrightarrow18x-6x-36+12x>0\Leftrightarrow24x>36\Leftrightarrow x>\frac{3}{2}\)
c. \(\frac{2}{3}x-\frac{3}{4}>0\Leftrightarrow\frac{2}{3}x>\frac{3}{4}\Leftrightarrow x>\frac{9}{8}\)
d. \(\left(\frac{3}{4}-2x\right)\left(\frac{-3}{5}+\frac{2}{-61}-\frac{17}{51}\right)\le0\)
\(\Leftrightarrow\frac{3}{4}-2x\le0\Leftrightarrow2x\le\frac{3}{4}\Leftrightarrow x\le\frac{3}{8}\)
e. \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\)
\(a,x=\dfrac{13}{2}-2\\ x=\dfrac{9}{2}\\ b,x=\dfrac{4}{5}\times\dfrac{3}{4}\\ x=\dfrac{12}{20}=\dfrac{3}{5}\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
Ko cần đâu bn à mk mong bn đấy
a)\(\left(3x-1\right)\left(5-\frac{1}{2}x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
b)\(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}\)
\(\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{29}{12}\\x=-\frac{13}{12}\end{cases}}\)
a)\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow\)3x - 1 = 0 hay \(\frac{-1}{2}\)x + 5 = 0
\(\Leftrightarrow\)3x = 1 I\(\Leftrightarrow\)\(\frac{-1}{2}\)x = -5
\(\Leftrightarrow\) x = \(\frac{1}{3}\) I\(\Leftrightarrow\) x = 10
b) 2 I \(\frac{1}{2}x-\frac{1}{3}\)I - \(\frac{3}{2}\)=\(\frac{1}{4}\)
\(\Leftrightarrow\) 2 I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{4}\)
\(\Leftrightarrow\) I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{7}{8}\) hay \(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{-7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{29}{24}\) I\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{-13}{24}\)
\(\Leftrightarrow\) x = \(\frac{29}{12}\) I\(\Leftrightarrow\) x = \(\frac{-13}{12}\)
c) (2x +\(\frac{3}{5}\))2 - \(\frac{9}{25}\)= 0
\(\Leftrightarrow\)(2x +\(\frac{3}{5}\))2 = \(\frac{9}{25}\)
\(\Leftrightarrow\) 2x +\(\frac{3}{5}\) = \(\frac{3}{5}\) hay 2x +\(\frac{3}{5}\)= \(\frac{-3}{5}\)
\(\Leftrightarrow\) 2x = 0 I \(\Leftrightarrow\)2x = \(\frac{-6}{5}\)
\(\Leftrightarrow\) x = 0 I \(\Leftrightarrow\) x = \(\frac{-3}{5}\)
d) 3(x -\(\frac{1}{2}\)) - 5(x +\(\frac{3}{5}\)) = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)3x - \(\frac{3}{2}\)- 5x - 3 = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)-2x + x - \(\frac{9}{2}\)- \(\frac{1}{5}\)= 0
\(\Leftrightarrow\)-x = \(\frac{-47}{10}\)
\(\Leftrightarrow\) x = \(\frac{47}{10}\)
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
Ta có :\(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=\left(-\frac{3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)
=> \(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=-\frac{1}{2}\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\)
=> \(2x-2=-\frac{1}{2}\)
=> \(2x=\frac{3}{2}\)
=> \(x=\frac{3}{4}\)