BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Bài 1:
a) Ta có: AB//CD(hai cạnh đối của hình bình hành ABCD)
⇒\(\widehat{A}+\widehat{ADC}=180^0\)(hai góc trong cùng phía bù nhau)
\(\Rightarrow\widehat{ADC}=180^0-120^0=60^0\)
mà DE là tia phân giác của \(\widehat{ADC}\)(gt)
nên \(\widehat{ADE}=\frac{\widehat{ADC}}{2}=\frac{60^0}{2}=30^0\)(1)
Xét ΔADE có \(\widehat{A}+\widehat{AED}+\widehat{ADE}=180^0\)(định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{AED}=180^0-120^0-30^0=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{AED}\)(=300)
Xét ΔADE có \(\widehat{ADE}=\widehat{AED}\)(cmt)
nên ΔADE cân tại A(định lí đảo của tam giác cân)
⇒AD=AE
mà \(AD=\frac{AB}{2}\)(gt)
nên \(AE=\frac{AB}{2}\)
mà A,E,B thẳng hàng
nên E là trung điểm của AB(đpcm)
Bài 2:
a) Xét tứ giác AFDE có
AF//DE(AB//DE, F∈AB)
AF=DE(gt)
Do đó: AFDE là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒DF=AE(hai cạnh đối của hình bình hành AFDE)
b) Ta có: AFDE là hình bình hành(cmt)
⇒Hai đường chéo AD và FE cắt nhau tại trung điểm của mỗi đường(định lí hình bình hành)
mà I là trung điểm của AD(gt)
nên I là trung điểm của FE
hay F và E đối xứng nhau qua I(đpcm)
bài 1 chưa làm câu b ak bn