Cho a và b là hai số tự nhiên. Biết a chia cho 6 dư 1; b chia cho 6 dư 2.
Tích ab chia cho 6 dư bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Ta cộng 2 số dư của a và b thì thấy tổng đó chia hết cho 6
Vậy a + b chia hết cho 6
Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)
Ta có: a.b = (5.m + 1).(5.n + 2)
= (5.m + 1).5.n + (5.m + 1).2
= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2
=> a.b chia 5 dư 2
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
nếu a và b đều là 2 số tự nhiên có 1 chữ số thì
a là 7/6 dư 1
b là 8 chia 6 dư 2
a chia 6 dư 1=> a=6n+1
b chia 6 dư 2=>b=6n+2
Do đó ab=(6n+1)(6n+2)=36n2+18n+2
=> ab chia 6 dư 2