\(\frac{\sqrt{-3x}}{x^2-1}\) Tìm điều kiện để căn thức có nghĩa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{-3x}}{x^2-1}\)
Điều kiện để căn thức có nghĩa là :
\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)
Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0
Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
a) ĐKXĐ: \(x+5\ge0\Leftrightarrow x\ge-5\)
b) ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\)
c) ĐKXĐ: \(x+3>0\Leftrightarrow x>-3\)
d) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)
\(\frac{7-3x}{x^4+1}\ge0do:x^4\ge0\Rightarrow x^4+1>0\Rightarrow\frac{7-3x}{x^4+1}\ge0\Leftrightarrow7-3x\ge0\Leftrightarrow x\le\frac{7}{3}\)