K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

a. Ta có:

MG//AD (gt)

KC//AD (gt)

=> MG//KC.

b.

c. Ta có: AD//KC (gt)

=> góc DAC = góc ACK

Mà góc DAC = góc DAB (AD là phân giác)

=> Góc ACK = góc DAB .

Mà góc DAB = góc AKC (AD//KC)

=> Góc ACK = góc AKC.

=> Tam giác AKC cân tại A.

23 tháng 7 2020

VuongTung10x ơi, chứng minh BG=CF mà

23 tháng 7 2020

B A C D M F G

P/s: Đề sai phải sửa thành chứng minh BF = CG

Bài làm:

Ta có: Vì AD // FM 

=> \(\frac{AB}{BF}=\frac{BD}{BM}\left(1\right)\)

Vì GM // AD

=> \(\frac{CG}{AC}=\frac{CM}{DC}\left(2\right)\)

Nhân vế (1) và (2) với nhau ta được:

\(\frac{AB}{BF}.\frac{CG}{AC}=\frac{BD}{BM}.\frac{CM}{DC}\left(3\right)\)

Mà M là trung điểm của BC => BM = CM (4)

Lại có AD là phân giác của tam giác ABC và D thuộc BC

=> \(\frac{BD}{DC}=\frac{AB}{AC}\left(5\right)\)

Kết hợp (3) với (4) và (5) ta được:

\(\frac{AB}{AC}.\frac{CG}{BF}=\frac{BD}{DC}.\frac{CM}{BM}\Leftrightarrow\frac{AB}{AC}.\frac{CG}{BF}=\frac{AB}{AC}\Leftrightarrow\frac{CG}{BF}=1\)

\(\Rightarrow CG=BF\)

28 tháng 3 2021

ko biết thì đừng có bình luận bucqua

27 tháng 1 2021

undefined

3 tháng 5 2019

1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E 

F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .

2). Giả sử G là giao điểm của BE  CF.

Ta có  G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B   , và  F B ∥ A D  ta có  G ∈ A D .

3). Chứng minh  B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.