\(B=\left(\frac{\left(x-2\right)}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\) rut gon
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(=\frac{(\sqrt{x}+1)\sqrt{x}(\sqrt{x}-\sqrt{y}))\sqrt{x}+\sqrt{y})}{(x-y)x(\sqrt{x}+1)}=\frac{(\sqrt{x}+1)\sqrt{x}(x-y)}{(x-y)x\sqrt{x}+1)}=\frac{1}{\sqrt{x}}\)
b)
\(=\frac{(2-\sqrt{x}-\sqrt{x}-3)(2-\sqrt{x}+\sqrt{x}+3)}{1+2\sqrt{x}}=\frac{(-1-2\sqrt{x}).5}{2\sqrt{x}+1}=\frac{-5(2\sqrt{x}+1)}{2\sqrt{x}+1}=-5\)
\(a,\frac{\left(\sqrt{x}+1\right)\cdot\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\sqrt{x}\left(x+1\right)}\)\(=\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(x-y\right)}{\left(x-y\right)\sqrt{x} \left(x+1\right)}\)\(=\frac{\sqrt{x}+1}{x+1}\)
\(b,\frac{\left(2-\sqrt{x}\right)^2-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{4+x-4\sqrt{x}-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{1+x-5\sqrt{x}}{1+2\sqrt{x}}\)
a/ \(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)
\(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\sqrt{x^2}-1+\sqrt{x}-1}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)
\(P=\left(\frac{3\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{1}{\left(\sqrt{x}-1\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}-1}{1}\right)\)
=> \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}\)
b/ \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}=\sqrt{x}-1\)
<=> \(4\sqrt{x}=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
<=> \(4\sqrt{x}=x-1\). Bình phương 2 vế, ta được:
<=> 16x=(x-1)2
<=> 16x=x2-2x+1
<=> x2-18x+1=0
\(\Delta'=81-1=80=>\sqrt{\Delta'}=4\sqrt{5}\)
=> \(x_1=9-4\sqrt{5}\)
\(x_2=9+4\sqrt{5}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
\(\Leftrightarrow P=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)
\(\Leftrightarrow P=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\frac{x+1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow P=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\frac{-\sqrt{x}+1}{x+\sqrt{x}+1}\)
b) Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Để \(P\le0\Leftrightarrow-\sqrt{x}+1\le0\)
\(\Leftrightarrow-\sqrt{x}\le-1\)
\(\Leftrightarrow\sqrt{x}\ge1\)
\(\Leftrightarrow x\ge1\)
Vì đkxđ : \(x\ne1\)
Vậy để \(P\le0\Leftrightarrow x>1\)
=\(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)