M=¹/11+¹/12+¹/13+...+¹/19+¹/20
N= 5²/5.10+5²/10.15+...+5²/2000.2005+5²/2005.2010
So sánh M và N
Cho S= 2/2.4+2/4.6+2/6.8+...+2/298.300
Q=1/101+1/102+1/103+...+1/300
So sánh S và Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
ta có \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2005.2010}\)
\(N=5\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)
\(N=5\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)(sử dụng quy tắc dấu ngoặc)
\(N=5\left[\frac{1}{5}-\left(\frac{1}{10}-\frac{1}{10}\right)-\left(\frac{1}{15}-\frac{1}{15}\right)-...-\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-0-0-...-0-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-\frac{1}{2010}\right]\)
\(N=5.\frac{401}{2010}\)
\(N=\frac{401}{402}\)
b) \(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
ta thấy \(\frac{1}{11}=\frac{1}{11}\)
\(\frac{1}{12}
(1/12+3 1/6-30,75).x -8 = (3/5+0,415+1/200):0,01
(1/12+19/6-123/4).x-8=(3/5+83/200+1/200):1/100
-55/2.x-8=51/50:1/100
-55/2.x-8=102
-55/2.x=102+8=110
x=110:-55/2=-4
Ta có:
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
Ta lại có:
\(N=\frac{101^{103}+1}{101^{104}+1}\)
\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)
Ta có : \(101M=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+100+1}{101^{103}+1}=1+\frac{100}{101^{103}+1};\)
\(101N=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=1\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\Rightarrow1+\frac{100}{101^{103}+1}>1+\frac{100}{101^{104}+1}\Rightarrow101M>101N\)
=> M > N
b) Ta có: \(S=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{298\cdot300}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\)
\(=\frac{1}{2}-\frac{1}{300}=\frac{149}{300}< \frac{200}{300}=\frac{2}{3}\)
hay \(S< \frac{2}{3}\)(1)
Ta có: \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)
nên \(\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(vì mỗi ngoặc trên đều có 100 phân số có tử là 1)
\(\Leftrightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}>\frac{1}{200}\cdot100+\frac{1}{300}\cdot100\)
\(\Leftrightarrow Q>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
mà \(\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)
nên \(Q>\frac{2}{3}\)
hay \(\frac{2}{3}< Q\)(2)
Từ (1) và (2) suy ra S<Q