Tính các tổng sau:\(B=\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+\frac{41}{4.5}+...+\frac{181}{9.10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+\frac{41}{4.5}+...+\frac{181}{9.10}\) \(=\frac{4+1}{2}+\frac{12+1}{6}+\frac{24+1}{12}+\frac{40+1}{20}+...+\frac{180+1}{90}\)
\(=2+\frac{1}{1.2}+2+\frac{1}{2.3}+2+\frac{1}{3.4}+2+\frac{1}{4.5}+...+2+\frac{1}{9.10}\)
\(=18+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=19-\frac{1}{10}\)
\(=\frac{189}{10}\)
\(A=\frac{4+1}{1.2}+\frac{24+1}{3.4}+\frac{40+1}{4.5}+...+\frac{180+1}{9.10}\)
\(A=\left(\frac{4}{1.2}+\frac{24}{3.4}+\frac{40}{4.5}+...+\frac{180}{9.10}\right)+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(A=\left(2+2+2+...+2\right)+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=2.8+\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{10}\right)=16+\frac{22}{30}=16\frac{11}{15}\)
\(\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+...+\frac{181}{9.10}\)
=\(\frac{4+1}{2}+\frac{12+1}{6}+\frac{24+1}{12}+...+\frac{180+1}{90}\)
=\(2+\frac{1}{1.2}+2+\frac{1}{2.3}+2+\frac{1}{3.4}+...+2+\frac{1}{9.10}\)
=\(18+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
=\(9-\frac{1}{10}\)
=\(\frac{189}{10}\)
Đầu tiên thì nhắc lại cái hằng đẳng thức cho bạn nào chưa học này: (a-b)2=a2-2ab+b2<=>a2+b2=(a-b)2+2ab
\(S=\dfrac{\left(1^2+2^2\right)}{1.2}+\dfrac{\left(2^2+3^2\right)}{2.3}+...+\dfrac{\left(9^2+10^2\right)}{9.10}\)
\(=\dfrac{\left(\left(1-2\right)^2+2.1.2\right)}{1.2}+\dfrac{\left(\left(2-3\right)^2+2.2.3\right)}{2.3}+...+\dfrac{\left(\left(9-10\right)^2+2.9.10\right)}{9.10}\)
\(=\dfrac{\left(\left(-1\right)^2\right)}{1.2+2}+\dfrac{\left(\left(-1\right)^2\right)}{2.3+2}+...+\dfrac{\left(\left(-1^2\right)\right)}{9.10+2}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}+2.9\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}+18\)
\(=1-\dfrac{1}{10}+18\)
\(=18,9=\dfrac{189}{10}.\)
~ K chắc là đúng đâu ~
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{10}\)
\(=\frac{1}{10}\)
(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-......+1/9-1/10)
1-1/10=9/10
nhớ cho mk
Ta có
\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)
\(=2-\frac{1}{10}\)
\(=\frac{19}{10}\)
Vậy \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)\(=\frac{19}{10}\)
\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)
\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)
\(=-\frac{9}{10}+\frac{1}{90}\)
= ...
bn tự tính nha!